Free Access
Issue
Med Sci (Paris)
Volume 21, Number 5, Mai 2005
Page(s) 484 - 490
Section M/S revues
DOI https://doi.org/10.1051/medsci/2005215484
Published online 15 May 2005
  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292 : 154–6. [Google Scholar]
  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78 : 7634–8. [Google Scholar]
  3. Gerecht-Nir S, Itskovitz-Eldor J. Cell therapy using human embryonic stem cells. Transpl Immunol 2004; 12 : 203–9. [Google Scholar]
  4. Fluckiger AC, Dehay C, Savatier P. Embryonic stem cells and cell replacement therapies in the nervous system. Med Sci (Paris) 2003; 19 : 699–708. [Google Scholar]
  5. McKay RD. Stem cell biology and neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 2004; 359 : 851–6. [Google Scholar]
  6. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997; 94 : 3801–4. [Google Scholar]
  7. Li M, Sendtner M, Smith A. Essential function of LIF receptor in motor neurons. Nature 1995; 378 : 724–7. [Google Scholar]
  8. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359 : 76–9. [Google Scholar]
  9. O’Shea KS. Self-renewal versus differentiation of mouse embryonic stem cells. Biol Reprod 2004; 71 : 1755–65. [Google Scholar]
  10. Nichols J. Introducing embryonic stem cells. Curr Biol 2001; 11 : R503–5. [Google Scholar]
  11. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113 : 631–42. [Google Scholar]
  12. Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 2001; 26 : 137–48. [Google Scholar]
  13. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95 : 379–91. [Google Scholar]
  14. Hatano SY, Tada M, Kimura H, et al. Pluripotential competence of cells associated with Nanog activity. Mech Dev 2005; 122 : 67–79. [Google Scholar]
  15. Shimozaki K, Nakashima K, Niwa H, et al. Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development 2003; 130 : 2505–12. [Google Scholar]
  16. Panchision DM, McKay RD. The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev 2002; 12 : 478–87. [Google Scholar]
  17. Jessell TM. Neuronal specification in the spinal cord : inductive signals and transcriptional codes. Nat Rev Genet 2000; 1 : 20–9. [Google Scholar]
  18. Wilson SI, Edlund T. Neural induction : toward a unifying mechanism. Nat Neurosci 2001; 4 (suppl) : 1161–8. [Google Scholar]
  19. Tropepe V, Hitoshi S, Sirard C, et al. Direct neural fate specification from embryonic stem cells : a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001; 30 : 65–78. [Google Scholar]
  20. Czyz J, Wobus A. Embryonic stem cell differentiation : the role of extracellular factors. Differentiation 2001; 68 : 167–74. [Google Scholar]
  21. Coucouvanis E, Martin GR. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 1999; 126 : 535–46. [Google Scholar]
  22. Aubert J, Dunstan H, Chambers I, et al. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 2002; 20 : 1240–5. [Google Scholar]
  23. Kielman MF, Rindapaa M, Gaspar C, et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Genet 2002; 32 : 594–605. [Google Scholar]
  24. Otero JJ, Fu W, Kan L, et al. Beta-catenin signaling is required for neural differentiation of embryonic stem cells. Development 2004; 131 : 3545–57. [Google Scholar]
  25. Ying QL, Stavridis M, Griffiths D, et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21 : 183–6. [Google Scholar]
  26. Gottlieb DI. Large-scale sources of neural stem cells. Annu Rev Neurosci 2002; 25 : 381–407. [Google Scholar]
  27. Okada Y, Shimazaki T, Sobue G, et al. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol 2004; 275 : 124–42. [Google Scholar]
  28. Ruiz I, Altaba A, Stecca B, Sanchez P. Hedgehog-Gli signaling in brain tumors : stem cells and paradevelopmental programs in cancer. Cancer Lett 2004; 204 : 145–57. [Google Scholar]
  29. Lang KJ, Rathjen J, Vassilieva S, et al. Differentiation of embryonic stem cells to a neural fate : a route to re-building the nervous system ? J Neurosci Res 2004; 76 : 184–92. [Google Scholar]
  30. Mizuseki K, Sakamoto T, Watanabe K, et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA 2003; 100 : 5828–33. [Google Scholar]
  31. Wichterle H, Lieberam I, Porter JA, et al. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002; 110 : 385–97. [Google Scholar]
  32. Shiotsugu J, Katsuyama Y, Arima K, et al. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 2004; 131 : 2653–67. [Google Scholar]
  33. Altmann CR, Bell E, Sczyrba A, et al. Microarray-based analysis of early development in Xenopus laevis. Dev Biol 2001; 236 : 64–75. [Google Scholar]
  34. Maye P, Becker S, Kasameyer E, et al. Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies. Mech Dev 2000; 94 : 117–32. [Google Scholar]
  35. Maye P, Becker S, Siemen H, et al. Hedgehog signaling is required for the differentiation of ES cells into neurectoderm. Dev Biol 2004; 265 : 276–90. [Google Scholar]
  36. Barberi T, Klivenyi P, Calingasan NY, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003; 21 : 1200–7. [Google Scholar]
  37. Simon HH, Bhatt L, Gherbassi D, et al. Midbrain dopaminergic neurons : determination of their developmental fate by transcription factors. Ann NY Acad Sci 2003; 991 : 36–47. [Google Scholar]
  38. Kim JH, Auerbach JM, Rodriguez-Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418 : 50–6. [Google Scholar]
  39. Jiang C, Wan X, He Y, et al. Age-dependent dopaminergic dysfunction in Nurr1 knockout mice. Exp Neurol 2005; 191 : 154–62. [Google Scholar]
  40. Chandran S, Kato H, Gerreli D, et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 2003; 130 : 6599–609. [Google Scholar]
  41. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors : a source of myelinating transplants. Science 1999; 285 : 754–6. [Google Scholar]
  42. Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 2000; 97 : 6126–31. [Google Scholar]
  43. Xian HQ, McNichols E, St Clair A, et al. A subset of ES-cell-derived neural cells marked by gene targeting. Stem Cells 2003; 21 : 41–9. [Google Scholar]
  44. Angelov DN, Arnhold S, Andressen C, et al. Temporospatial relationships between macroglia and microglia during in vitro differentiation of murine stem cells. Dev Neurosci 1998; 20 : 42–51. [Google Scholar]
  45. Xian H, Gottlieb DI. Dividing Olig2-expressing progenitor cells derived from ES cells. Glia 2004; 47 : 88–101. [Google Scholar]
  46. Gardner RL, Brook FA. Reflections on the biology of embryonic stem (ES) cells. Int J Dev Biol 1997; 41 : 235–43 [Google Scholar]
  47. Ahn JI, Lee KH, Shin DM, et al. Comprehensive transcriptome analysis of differentiation of embryonic stem cells into midbrain and hindbrain neurons. Dev Biol 2004; 265 : 491–501. [Google Scholar]
  48. Appel B, Eisen JS. Retinoids run rampant : multiple roles during spinal cord and motor neuron development. Neuron 2003; 40 : 461–4. [Google Scholar]
  49. Arnhold S, Lenartz D, Kruttwig K, et al. Differentiation of green fluorescent protein-labeled embryonic stem cell-derived neural precursor cells into Thy-1-positive neurons and glia after transplantation into adult rat striatum. J Neurosurg 2000; 93 : 1026–32. [Google Scholar]
  50. Strubing C, Ahnert-Hilger G, Shan J, et al. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 1995; 53 : 275–87. [Google Scholar]
  51. Cazillis M, Gonzalez BJ, Billardon C, et al. VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. Eur J Neurosci 2004; 19 : 798–808. [Google Scholar]
  52. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28 : 31–40. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.