Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 5, Mai 2005
Page(s) 491 - 497
Section M/S revues
DOI https://doi.org/10.1051/medsci/2005215491
Publié en ligne 15 mai 2005
  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25 : 585–621.
  2. Wright WE, Shay JW. Cellular senescence as a tumor-protection mechanism : the essential role of counting. Curr Opin Genet Dev 2001; 11 : 98–103.
  3. Shay JW, Roninson IB. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 2004; 23 : 2919–33.
  4. Kim SH, Kaminker P, Campisi J. Telomeres, aging and cancer : in search of a happy ending. Oncogene 2002; 21 : 503–11.
  5. Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106 : 661–73.
  6. De Lange T. Protection of mammalian telomeres. Oncogene 2002; 21 : 532–40.
  7. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43 : 405–13.
  8. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345 : 458–60.
  9. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279 : 349–52.
  10. Morales CP, Holt SE, Ouellette M, et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 1999; 21 : 115–8.
  11. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999; 400 : 464–8.
  12. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266 : 2011–5.
  13. Hiyama E, Hiyama K, Yokoyama T, et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995; 1 : 249–55.
  14. Wynford-Thomas D, Bond JA, Wyllie FS, et al. Does telomere shortening drive selection for p53 mutation in human cancer ? Mol Carcinog 1995; 12 : 119–23.
  15. Gire V, Wynford-Thomas D. Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 1998; 18 : 1611–21.
  16. Noda A, Ning Y, Venable SF, et al. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 1994; 211 : 90–8.
  17. Gire V, Roux P, Wynford-Thomas D, et al. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 2004; 23 : 2554–63.
  18. Di Leonardo A, Linke SP, Clarkin K, et al. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994, 8 : 2540–51.
  19. D’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426 : 194–8.
  20. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421 : 499–506.
  21. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001; 15 : 2177–96.
  22. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11 : 1921–9.
  23. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295 : 2446–9.
  24. Karlseder J, Broccoli D, Dai Y, et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283 : 1321–5.
  25. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003; 13 : 1549–56.
  26. Van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92 : 401–13.
  27. Stewart SA, Ben-Porath I, Carey VJ, et al. Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 2003; 33 : 492–6.
  28. Shay JW, Van Der Haegen BA, Ying Y, et al. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res 1993; 209 : 45–52.
  29. Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 1992; 27 : 383–9.
  30. Bryan TM, Englezou A, Gupta J, et al. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995; 14 : 4240–8.
  31. Blasco MA. Mouse models to study the role of telomeres in cancer, aging and DNA repair. Eur J Cancer 2002; 38 : 2222–8.
  32. Gonzalez-Suarez E, Samper E, Flores JM, et al. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26 : 114–7.
  33. Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 1999; 97 : 515–25.
  34. Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88 : 593–602.
  35. Drayton S, Peters G. Immortalisation and transformation revisited. Curr Opin Genet Dev 2002; 12 : 98–104.
  36. Wei W, Hemmer RM, Sedivy JM. Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 2001; 21 : 6748–57.
  37. Alcorta DA, Xiong Y, Phelps D, et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 1996; 93 : 13742–7.
  38. Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence : roles of the p53 and p16 pathways. EMBO J 2003; 22 : 4212–22.
  39. Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396 : 84–8.
  40. Ramirez RD, Morales CP, Herbert BS, et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 2001; 15 : 398–403.
  41. Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91 : 649–59.
  42. Sharpless NE, Bardeesy N, Lee KH, et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413 : 86–91.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.