Free Access
Issue
Med Sci (Paris)
Volume 19, Number 2, Février 2003
Page(s) 173 - 186
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2003192173
Published online 15 February 2003
  1. Borgne A, Meijer L. Inhibiteurs chimiques des kinases dépendantes des cyclines: recherche et applications thérapeutiques potentielles. Med Sci 1999; 15: 496–503. [Google Scholar]
  2. Sherr CJ, DePinho RA. Cellular senescence: mitotic clock or culture shock? Cell 2000; 102: 407–10. [Google Scholar]
  3. Bartek J, Falck J, Lukas J. Chk2 kinase - a busy messenger. Nat Rev Mol Cell Biol 2001; 2: 877–86. [Google Scholar]
  4. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 2001; 13: 738–47. [Google Scholar]
  5. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20: 1803–15. [Google Scholar]
  6. Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999; 10: 2703–34. [Google Scholar]
  7. Bartek J, Lukas J. Cell cycle: order from destruction. Science 2001; 294: 66–7. [Google Scholar]
  8. Nilsson I, Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 2000; 4: 107–14. [Google Scholar]
  9. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1- phase progression. Genes Dev 1999; 13: 1501–12. [Google Scholar]
  10. Ren B, Cam H, Takahashi Y, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 2002; 16: 245–56. [Google Scholar]
  11. Trumpp A, Refaeli Y, Oskarsson T, et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 2001; 414: 768–73. [Google Scholar]
  12. Grandori C, Cowley SM, James LP, Eisenman RN. The myc/max/mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653–99. [Google Scholar]
  13. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–9. [Google Scholar]
  14. Durocher D, Jackson SP. DNAPK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 2001; 13: 225–31. [Google Scholar]
  15. Shiloh Y, Kastan MB. ATM:genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 2001; 83: 209–54. [Google Scholar]
  16. Pommier Y. Les ADN topoisomérases, gardes-barrières du génome et leur sabotage par les antibiotiques et anticancéreux. Med Sci 1994; 10: 953–5. [Google Scholar]
  17. Yu Q, Rose JH, Zhang H, Pommier Y. Antisense inhibition of Chk2/hCds1 expression attenuates DNA damage-induced S and G2 checkpoints and enhances apoptotic activity in HEK- 293 cells. FEBS Lett 2001; 505: 7–12. [Google Scholar]
  18. Yu Q, La Rose JH, Zhang H, Takemura H, Kohn KW, Pommier Y. UCN-01 inhibits p53 up-regulation and abrogates gammaradiation- induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 2002; 62: 5743–8. [Google Scholar]
  19. Daujat S, Neel H, Piette J. MDM2: life without p53. Trends Genet 2001; 17: 459–64. [Google Scholar]
  20. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–31. [Google Scholar]
  21. Xie S, Wu H, Wang Q, et al. Plk3 Functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 2001; 276: 43305–12. [Google Scholar]
  22. Fletcher L, Cheng Y, Muschel RJ. Abolishment of the Tyr-15 inhibitory phosphorylation site on cdc2 reduces the radiation-induced G(2) delay, revealing a potential checkpoint in early mitosis. Cancer Res 2002; 62: 241–50. [Google Scholar]
  23. Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001; 1: 222–31. [Google Scholar]
  24. Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 1999; 4: 199–207. [Google Scholar]
  25. Lane DP. Exploiting the p53 pathway for cancer diagnosis and therapy. Br J Cancer 1999; 80 (suppl 1): 1–5. [Google Scholar]
  26. Lee SB, Kim SH, Bell DW, et al. Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni syndrome. Cancer Res 2001; 61: 8062–7. [Google Scholar]
  27. Wang JYJ. New link in a web of human genes. Nature 2000; 405: 404–5. [Google Scholar]
  28. Fry DW, Garrett MD. Inhibitors of cyclin-dependent kinases as therapeutic agents for the treatment of cancer. Curr Opin Onc End Met Invest New Drugs 2000; 2: 40–59. [Google Scholar]
  29. Senderowicz AM. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 2000; 19: 6600–6. [Google Scholar]
  30. Pommier Y, Yu Q, Kohn KW. Novel targets in the cell cycle and cell cycle checkpoints. In : Baguley BC, Kerr DJ, eds. Anticancer drug development. San Diego : Academic Press, 2002 : 13–30. [Google Scholar]
  31. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclindependent kinase modulators. J Natl Cancer Inst 2000; 92: 376–87. [Google Scholar]
  32. Hoessel R, Leclerc S, Endicott JA, et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1999; 1: 60–7. [Google Scholar]
  33. Boschelli DH, Dobrusin EM, Doherty AM, et al. Pyrido [2,3-D] pyrimidines and 4- aminopyrimidines as inhibitors of cellular proliferation. Warner- Lambert Co, 1998;: WO- 09833798. [Google Scholar]
  34. Graves PR, Yu L, Schwarz JK, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000; 275: 5600–5. [Google Scholar]
  35. Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA: DNA-PK complexes. EMBO J 1999; 18: 1397–406. [Google Scholar]
  36. Christodoulopoulos G, Muller C, Salles B, Kazmi R, Panasci L. Potentiation of chlorambucil cytotoxicity in B-cell chronic lymphocytic leukemia by inhibition of DNA-dependent protein kinase activity using wortmannin. Cancer Res 1998; 58: 1789–92. [Google Scholar]
  37. Eckstein JW. Cdc25 as a potential target of anticancer agents. Invest New Drugs 2000; 18: 149–56. [Google Scholar]
  38. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. Onyx- 015, an E1B gene-attenuated adenovirus, causes tumorspecific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–45. [Google Scholar]
  39. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX- 015, a selectively-replicating adenovirus, in combination with cisplatin and 5- fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–85. [Google Scholar]
  40. Chene P, Fuchs J, Bohn J, Garcia-Echeverria C, Furet P, Fabbro D. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol 2000; 299: 245–53. [Google Scholar]
  41. Midgley CA, Desterro JM, Saville MK, et al. An Nterminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo, Oncogene 2000; 19: 2312–23. [Google Scholar]
  42. Novak K. p53 restoration. Nat Rev Cancer 2002; 2: 159. [Google Scholar]
  43. Giorello L, Clerico L, Pescarolo MP, et al. Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence. Cancer Res 1998; 58: 3654–9. [Google Scholar]
  44. Pescarolo MP, Bagnasco L, Malacarne D, et al. A retroinverso peptide homologous to helix 1 of c-Myc is a potent and specific inhibitor of proliferation in different cellular systems. Faseb J 2001; 15:31–3. [Google Scholar]
  45. Rothblum-Oviatt CJ, Ryan CE, Piwnica-Worms H. 14-3-3 binding regulates catalytic activity of human wee1 kinase. Cell Growth Differ 2001; 12: 581–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.