Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 2, Février 2003
Page(s) 173 - 186
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2003192173
Publié en ligne 15 février 2003
  1. Borgne A, Meijer L. Inhibiteurs chimiques des kinases dépendantes des cyclines: recherche et applications thérapeutiques potentielles. Med Sci 1999; 15: 496–503.
  2. Sherr CJ, DePinho RA. Cellular senescence: mitotic clock or culture shock? Cell 2000; 102: 407–10.
  3. Bartek J, Falck J, Lukas J. Chk2 kinase - a busy messenger. Nat Rev Mol Cell Biol 2001; 2: 877–86.
  4. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 2001; 13: 738–47.
  5. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20: 1803–15.
  6. Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999; 10: 2703–34.
  7. Bartek J, Lukas J. Cell cycle: order from destruction. Science 2001; 294: 66–7.
  8. Nilsson I, Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 2000; 4: 107–14.
  9. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1- phase progression. Genes Dev 1999; 13: 1501–12.
  10. Ren B, Cam H, Takahashi Y, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 2002; 16: 245–56.
  11. Trumpp A, Refaeli Y, Oskarsson T, et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 2001; 414: 768–73.
  12. Grandori C, Cowley SM, James LP, Eisenman RN. The myc/max/mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653–99.
  13. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–9.
  14. Durocher D, Jackson SP. DNAPK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 2001; 13: 225–31.
  15. Shiloh Y, Kastan MB. ATM:genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 2001; 83: 209–54.
  16. Pommier Y. Les ADN topoisomérases, gardes-barrières du génome et leur sabotage par les antibiotiques et anticancéreux. Med Sci 1994; 10: 953–5.
  17. Yu Q, Rose JH, Zhang H, Pommier Y. Antisense inhibition of Chk2/hCds1 expression attenuates DNA damage-induced S and G2 checkpoints and enhances apoptotic activity in HEK- 293 cells. FEBS Lett 2001; 505: 7–12.
  18. Yu Q, La Rose JH, Zhang H, Takemura H, Kohn KW, Pommier Y. UCN-01 inhibits p53 up-regulation and abrogates gammaradiation- induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 2002; 62: 5743–8.
  19. Daujat S, Neel H, Piette J. MDM2: life without p53. Trends Genet 2001; 17: 459–64.
  20. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–31.
  21. Xie S, Wu H, Wang Q, et al. Plk3 Functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 2001; 276: 43305–12.
  22. Fletcher L, Cheng Y, Muschel RJ. Abolishment of the Tyr-15 inhibitory phosphorylation site on cdc2 reduces the radiation-induced G(2) delay, revealing a potential checkpoint in early mitosis. Cancer Res 2002; 62: 241–50.
  23. Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001; 1: 222–31.
  24. Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 1999; 4: 199–207.
  25. Lane DP. Exploiting the p53 pathway for cancer diagnosis and therapy. Br J Cancer 1999; 80 (suppl 1): 1–5.
  26. Lee SB, Kim SH, Bell DW, et al. Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni syndrome. Cancer Res 2001; 61: 8062–7.
  27. Wang JYJ. New link in a web of human genes. Nature 2000; 405: 404–5.
  28. Fry DW, Garrett MD. Inhibitors of cyclin-dependent kinases as therapeutic agents for the treatment of cancer. Curr Opin Onc End Met Invest New Drugs 2000; 2: 40–59.
  29. Senderowicz AM. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 2000; 19: 6600–6.
  30. Pommier Y, Yu Q, Kohn KW. Novel targets in the cell cycle and cell cycle checkpoints. In : Baguley BC, Kerr DJ, eds. Anticancer drug development. San Diego : Academic Press, 2002 : 13–30.
  31. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclindependent kinase modulators. J Natl Cancer Inst 2000; 92: 376–87.
  32. Hoessel R, Leclerc S, Endicott JA, et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1999; 1: 60–7.
  33. Boschelli DH, Dobrusin EM, Doherty AM, et al. Pyrido [2,3-D] pyrimidines and 4- aminopyrimidines as inhibitors of cellular proliferation. Warner- Lambert Co, 1998;: WO- 09833798.
  34. Graves PR, Yu L, Schwarz JK, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000; 275: 5600–5.
  35. Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA: DNA-PK complexes. EMBO J 1999; 18: 1397–406.
  36. Christodoulopoulos G, Muller C, Salles B, Kazmi R, Panasci L. Potentiation of chlorambucil cytotoxicity in B-cell chronic lymphocytic leukemia by inhibition of DNA-dependent protein kinase activity using wortmannin. Cancer Res 1998; 58: 1789–92.
  37. Eckstein JW. Cdc25 as a potential target of anticancer agents. Invest New Drugs 2000; 18: 149–56.
  38. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. Onyx- 015, an E1B gene-attenuated adenovirus, causes tumorspecific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–45.
  39. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX- 015, a selectively-replicating adenovirus, in combination with cisplatin and 5- fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–85.
  40. Chene P, Fuchs J, Bohn J, Garcia-Echeverria C, Furet P, Fabbro D. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol 2000; 299: 245–53.
  41. Midgley CA, Desterro JM, Saville MK, et al. An Nterminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo, Oncogene 2000; 19: 2312–23.
  42. Novak K. p53 restoration. Nat Rev Cancer 2002; 2: 159.
  43. Giorello L, Clerico L, Pescarolo MP, et al. Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence. Cancer Res 1998; 58: 3654–9.
  44. Pescarolo MP, Bagnasco L, Malacarne D, et al. A retroinverso peptide homologous to helix 1 of c-Myc is a potent and specific inhibitor of proliferation in different cellular systems. Faseb J 2001; 15:31–3.
  45. Rothblum-Oviatt CJ, Ryan CE, Piwnica-Worms H. 14-3-3 binding regulates catalytic activity of human wee1 kinase. Cell Growth Differ 2001; 12: 581–9.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.