Free Access
Med Sci (Paris)
Volume 18, Number 12, Décembre 2002
Page(s) 1197 - 1199
Section Le Magazine : Nouvelles
Published online 15 December 2002
  1. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Ann Rev Immunol 2000; 18: 621–63. [Google Scholar]
  2. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 1997; 388: 548–54. [Google Scholar]
  3. Mercurio F, Zhu H, Murray BW, et al. IKK-1 and IKK-2 : cytokine-activated IκB kinases essential for NF-κB activation. Science 1997; 278 : 860–6. [Google Scholar]
  4. Israël A. The IKK complex : an integrator of all signals that activate NF-κB ? Trends Cell Biol 2000; 10 : 129–33. [Google Scholar]
  5. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 1999; 284: 321–5. [Google Scholar]
  6. Tanaka M, Fuentes ME, Yamaguchi K, et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 1999; 10: 421–9. [Google Scholar]
  7. Li ZW, Chu W, Hu Y, et al. The IKK-β subunit of IκB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis.J E xp Med 1999; 189: 1839–45. [Google Scholar]
  8. Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of the IκB kinase. Science 1999; 284: 316–20. [Google Scholar]
  9. Takeda K, Takeuchi O, Tsujimura T, et al. Limb and skin abnormalities in mice lacking IKKα. Science 1999; 284: 313–6. [Google Scholar]
  10. Li Q, Lu Q, Hwang JY, et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev 1999; 13: 1322–8. [Google Scholar]
  11. Hu Y, Baud V, Oga T, Kim K, Kazuhiko Y, Karin M. IKK controls formation of the epidermis independently of NF-κB via a differentiation inducing factor. Nature 2001; 410: 710–4. [Google Scholar]
  12. Senftleben U, Cao Y, Xiao G, et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 2001; 293: 1495–9. [Google Scholar]
  13. Yin L, Wu L, Wesche H, et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 2001; 291: 2162–7. [Google Scholar]
  14. Ling L, Cao Z, Goeddel DV. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc Natl Acad Sci USA 1998; 95: 3792–7. [Google Scholar]
  15. Xiao G, Harhaj EW, Sun SC. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol Cell 2001; 7: 401–9. [Google Scholar]
  16. Shinkura R, Kitada K, Matsuda F, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-κB-inducing kinase. Nat Genet 1999; 22: 74–7. [Google Scholar]
  17. Cao Y, Bonizzi G, Seagroves TN, et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 2001; 107: 763–75. [Google Scholar]
  18. Pasparakis M, Courtois G, Hafner M, et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 2002; 417: 861–6. [Google Scholar]
  19. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature 2000; 405: 466–72. [Google Scholar]
  20. Schmidt-Supprian M, Bloch W, Courtois G, et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol Cell 2000; 5: 981–92. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.