Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 12, Décembre 2002
Page(s) 1197 - 1199
Section Le Magazine : Nouvelles
DOI https://doi.org/10.1051/medsci/200218121197
Publié en ligne 15 décembre 2002
  1. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Ann Rev Immunol 2000; 18: 621–63. [Google Scholar]
  2. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 1997; 388: 548–54. [Google Scholar]
  3. Mercurio F, Zhu H, Murray BW, et al. IKK-1 and IKK-2 : cytokine-activated IκB kinases essential for NF-κB activation. Science 1997; 278 : 860–6. [Google Scholar]
  4. Israël A. The IKK complex : an integrator of all signals that activate NF-κB ? Trends Cell Biol 2000; 10 : 129–33. [Google Scholar]
  5. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 1999; 284: 321–5. [Google Scholar]
  6. Tanaka M, Fuentes ME, Yamaguchi K, et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 1999; 10: 421–9. [Google Scholar]
  7. Li ZW, Chu W, Hu Y, et al. The IKK-β subunit of IκB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis.J E xp Med 1999; 189: 1839–45. [Google Scholar]
  8. Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of the IκB kinase. Science 1999; 284: 316–20. [Google Scholar]
  9. Takeda K, Takeuchi O, Tsujimura T, et al. Limb and skin abnormalities in mice lacking IKKα. Science 1999; 284: 313–6. [Google Scholar]
  10. Li Q, Lu Q, Hwang JY, et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev 1999; 13: 1322–8. [Google Scholar]
  11. Hu Y, Baud V, Oga T, Kim K, Kazuhiko Y, Karin M. IKK controls formation of the epidermis independently of NF-κB via a differentiation inducing factor. Nature 2001; 410: 710–4. [Google Scholar]
  12. Senftleben U, Cao Y, Xiao G, et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 2001; 293: 1495–9. [Google Scholar]
  13. Yin L, Wu L, Wesche H, et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 2001; 291: 2162–7. [Google Scholar]
  14. Ling L, Cao Z, Goeddel DV. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc Natl Acad Sci USA 1998; 95: 3792–7. [Google Scholar]
  15. Xiao G, Harhaj EW, Sun SC. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol Cell 2001; 7: 401–9. [Google Scholar]
  16. Shinkura R, Kitada K, Matsuda F, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-κB-inducing kinase. Nat Genet 1999; 22: 74–7. [Google Scholar]
  17. Cao Y, Bonizzi G, Seagroves TN, et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 2001; 107: 763–75. [Google Scholar]
  18. Pasparakis M, Courtois G, Hafner M, et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 2002; 417: 861–6. [Google Scholar]
  19. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature 2000; 405: 466–72. [Google Scholar]
  20. Schmidt-Supprian M, Bloch W, Courtois G, et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol Cell 2000; 5: 981–92. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.