Free Access
Med Sci (Paris)
Volume 18, Number 11, Novembre 2002
Page(s) 1146 - 1154
Section Repères : Lexique
Published online 15 November 2002
  1. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17 : 540–52. [Google Scholar]
  2. Hasegawa M, Fujiwara M. Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol 1993; 2 : 1–5. [Google Scholar]
  3. Sogin ML. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1991; 1 : 457–63. [Google Scholar]
  4. Van de Peer Y, Ben Ali A, Meyer A. Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. Gene 2000; 246 : 1–8. [Google Scholar]
  5. Moreira D, Le Guyader H, Philippe H. The origin of red algae: implications for the evolution of chloroplasts. Nature 2000; 405 : 69–72. [Google Scholar]
  6. Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 2000; 97 : 4086–91. [Google Scholar]
  7. Graur D, Hide WA, Li WH. Is the guinea-pig a rodent? Nature 1991; 351 : 649–52. [Google Scholar]
  8. D’Erchia A, Gissi C, Pesole G, Saccone C, Arnason U. The guinea-pig is not a rodent. Nature 1996; 381 : 597–600. [Google Scholar]
  9. Madsen O, Scally M, Douady CJ, et al. Parallel adaptive radiations in two major clades of placental mammals. Nature 2001; 409 : 610–4. [Google Scholar]
  10. Murphy WJ, Eizirik E, Johnson WE, et al. Molecular phylogenetics and the origins of placental mammals. Nature 2001; 409 : 614–8. [Google Scholar]
  11. Philippe H. Rodent monophyly: pitfalls of molecular phylogenies. J Mol Evol 1997; 45 : 712–5. [Google Scholar]
  12. Sankoff D. Gene and genome duplication. Curr Opin Genet Dev 2001; 11 : 681–4. [Google Scholar]
  13. Ohno S. Evolution by gene duplication. Berlin: Springer Verlag, 1970. [Google Scholar]
  14. Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408 : 796–815. [Google Scholar]
  15. Gu X, Wang Y, Gu J. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 2002; 31 : 205–9. [Google Scholar]
  16. Friedman R, Hughes AL. Pattern and timing of gene duplication in animal genomes. Genome Res 2001; 11 : 1842–7. [Google Scholar]
  17. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405 : 299–304. [Google Scholar]
  18. Perna NT, Plunkett G, Burland V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 2001; 409 : 529–33. [Google Scholar]
  19. Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 1998; 95 : 9413–7. [Google Scholar]
  20. Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet 1998; 14 : 442–4. [Google Scholar]
  21. Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 2001; 55 : 709–42. [Google Scholar]
  22. Ragan MA. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett 2001; 201 : 187–91. [Google Scholar]
  23. Lander ES, Liton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409 : 860–921. [Google Scholar]
  24. Stanhope MJ, Lupas A, Italia MJ, et al. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 2001; 411 : 940–4. [Google Scholar]
  25. Doolittle WF. Phylogenetic classification and the universal tree. Science 1999; 284 : 2124–9. [Google Scholar]
  26. Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 1999; 96 : 3801–6. [Google Scholar]
  27. Brochier C, Philippe H, Moreira D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 2000; 16 : 529–33. [Google Scholar]
  28. Brochier C, Bapteste E, Moreira D, Philippe H. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 2000; 18 : 1–5. [Google Scholar]
  29. Matte-Tailliez O, Brochier C, Forterre P, Philippe H. Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 2002; 19 : 631–9. [Google Scholar]
  30. Lopez P, Casane D, Philippe H. Heterotachy, an important process of protein evolution. Mol Biol Evol 2002; 19 : 1–7. [Google Scholar]
  31. Lockhart PJ, Larkum AW, Steel M, Waddell PJ, Penny D. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc Natl Acad Sci USA 1996; 93 : 1930–4. [Google Scholar]
  32. Dayhoff MO. Atlas of protein sequence and structure (supplement 3, 1978). Washington: National Biomedical Research Foundation, 1979. [Google Scholar]
  33. Goldman N, Thorne JL, Jones DT. Assessing the impact of secondary structure and solvent accessibility on protein evolution. Genetics 1998; 149 : 445–58. [Google Scholar]
  34. Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press, 1983. [Google Scholar]
  35. Li WH. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 1993; 36 : 96–9. [Google Scholar]
  36. Yang Z, Nielsen R, Goldman N, Pedersen AM. Codonsubstitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000 ; 155 : 431–49. [Google Scholar]
  37. Suzuki Y, Gojobori T. A method for detecting positive selection at single amino acid sites. Mol Biol Evol 1999 ; 16 : 1315–28. [Google Scholar]
  38. Wyckoff GJ, Wang W, Wu CI. Rapid evolution of male reproductive genes in the descent of man. Nature 2000 ; 403 : 304–9. [Google Scholar]
  39. Bielawski JP, Yang Z. Positive and negative selection in the daz gene family. Mol Biol Evol 2001 ; 18 : 523–9. [Google Scholar]
  40. Hudson RR, Kreitman M, Aguade M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987 ; 116 : 153–9. [Google Scholar]
  41. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991 ; 351 : 652–4. [Google Scholar]
  42. Gaudieri S, Dawkins RL, Habara K, Kulski JK, Gojobori T. SNP profile within the human major histocompatibility complex reveals an extreme and interrupted level of nucleotide diversity. Genome 2000 ; 10 : 1579–86. [Google Scholar]
  43. Sharp PM, Cowe E, Higgins DG, et al. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: a review of the considerable within-species diversity. Nucleic Acids Res 1988 ; 16 : 8207–11. [Google Scholar]
  44. Eyre-Walker A. Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 1999 ; 152 : 675–83. [Google Scholar]
  45. Dufour C, Casane D, Denton D, et al. Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system. Genomics 2000 ; 69 : 14–26. [Google Scholar]
  46. Casane D, Boissinot S, Chang BH, Shimmin LC, Li W. Mutation pattern variation among regions of the primate genome. J Mol Evol 1997 ; 45 : 216–26. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.