Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 11, Novembre 2002
Page(s) 1146 - 1154
Section Repères : Lexique
Publié en ligne 15 novembre 2002
  1. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17 : 540–52. [Google Scholar]
  2. Hasegawa M, Fujiwara M. Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol 1993; 2 : 1–5. [Google Scholar]
  3. Sogin ML. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1991; 1 : 457–63. [Google Scholar]
  4. Van de Peer Y, Ben Ali A, Meyer A. Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. Gene 2000; 246 : 1–8. [Google Scholar]
  5. Moreira D, Le Guyader H, Philippe H. The origin of red algae: implications for the evolution of chloroplasts. Nature 2000; 405 : 69–72. [Google Scholar]
  6. Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 2000; 97 : 4086–91. [Google Scholar]
  7. Graur D, Hide WA, Li WH. Is the guinea-pig a rodent? Nature 1991; 351 : 649–52. [Google Scholar]
  8. D’Erchia A, Gissi C, Pesole G, Saccone C, Arnason U. The guinea-pig is not a rodent. Nature 1996; 381 : 597–600. [Google Scholar]
  9. Madsen O, Scally M, Douady CJ, et al. Parallel adaptive radiations in two major clades of placental mammals. Nature 2001; 409 : 610–4. [Google Scholar]
  10. Murphy WJ, Eizirik E, Johnson WE, et al. Molecular phylogenetics and the origins of placental mammals. Nature 2001; 409 : 614–8. [Google Scholar]
  11. Philippe H. Rodent monophyly: pitfalls of molecular phylogenies. J Mol Evol 1997; 45 : 712–5. [Google Scholar]
  12. Sankoff D. Gene and genome duplication. Curr Opin Genet Dev 2001; 11 : 681–4. [Google Scholar]
  13. Ohno S. Evolution by gene duplication. Berlin: Springer Verlag, 1970. [Google Scholar]
  14. Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408 : 796–815. [Google Scholar]
  15. Gu X, Wang Y, Gu J. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 2002; 31 : 205–9. [Google Scholar]
  16. Friedman R, Hughes AL. Pattern and timing of gene duplication in animal genomes. Genome Res 2001; 11 : 1842–7. [Google Scholar]
  17. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405 : 299–304. [Google Scholar]
  18. Perna NT, Plunkett G, Burland V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 2001; 409 : 529–33. [Google Scholar]
  19. Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 1998; 95 : 9413–7. [Google Scholar]
  20. Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet 1998; 14 : 442–4. [Google Scholar]
  21. Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 2001; 55 : 709–42. [Google Scholar]
  22. Ragan MA. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett 2001; 201 : 187–91. [Google Scholar]
  23. Lander ES, Liton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409 : 860–921. [Google Scholar]
  24. Stanhope MJ, Lupas A, Italia MJ, et al. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 2001; 411 : 940–4. [Google Scholar]
  25. Doolittle WF. Phylogenetic classification and the universal tree. Science 1999; 284 : 2124–9. [Google Scholar]
  26. Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 1999; 96 : 3801–6. [Google Scholar]
  27. Brochier C, Philippe H, Moreira D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 2000; 16 : 529–33. [Google Scholar]
  28. Brochier C, Bapteste E, Moreira D, Philippe H. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 2000; 18 : 1–5. [Google Scholar]
  29. Matte-Tailliez O, Brochier C, Forterre P, Philippe H. Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 2002; 19 : 631–9. [Google Scholar]
  30. Lopez P, Casane D, Philippe H. Heterotachy, an important process of protein evolution. Mol Biol Evol 2002; 19 : 1–7. [Google Scholar]
  31. Lockhart PJ, Larkum AW, Steel M, Waddell PJ, Penny D. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc Natl Acad Sci USA 1996; 93 : 1930–4. [Google Scholar]
  32. Dayhoff MO. Atlas of protein sequence and structure (supplement 3, 1978). Washington: National Biomedical Research Foundation, 1979. [Google Scholar]
  33. Goldman N, Thorne JL, Jones DT. Assessing the impact of secondary structure and solvent accessibility on protein evolution. Genetics 1998; 149 : 445–58. [Google Scholar]
  34. Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press, 1983. [Google Scholar]
  35. Li WH. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 1993; 36 : 96–9. [Google Scholar]
  36. Yang Z, Nielsen R, Goldman N, Pedersen AM. Codonsubstitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000 ; 155 : 431–49. [Google Scholar]
  37. Suzuki Y, Gojobori T. A method for detecting positive selection at single amino acid sites. Mol Biol Evol 1999 ; 16 : 1315–28. [Google Scholar]
  38. Wyckoff GJ, Wang W, Wu CI. Rapid evolution of male reproductive genes in the descent of man. Nature 2000 ; 403 : 304–9. [Google Scholar]
  39. Bielawski JP, Yang Z. Positive and negative selection in the daz gene family. Mol Biol Evol 2001 ; 18 : 523–9. [Google Scholar]
  40. Hudson RR, Kreitman M, Aguade M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987 ; 116 : 153–9. [Google Scholar]
  41. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991 ; 351 : 652–4. [Google Scholar]
  42. Gaudieri S, Dawkins RL, Habara K, Kulski JK, Gojobori T. SNP profile within the human major histocompatibility complex reveals an extreme and interrupted level of nucleotide diversity. Genome 2000 ; 10 : 1579–86. [Google Scholar]
  43. Sharp PM, Cowe E, Higgins DG, et al. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: a review of the considerable within-species diversity. Nucleic Acids Res 1988 ; 16 : 8207–11. [Google Scholar]
  44. Eyre-Walker A. Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 1999 ; 152 : 675–83. [Google Scholar]
  45. Dufour C, Casane D, Denton D, et al. Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system. Genomics 2000 ; 69 : 14–26. [Google Scholar]
  46. Casane D, Boissinot S, Chang BH, Shimmin LC, Li W. Mutation pattern variation among regions of the primate genome. J Mol Evol 1997 ; 45 : 216–26. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.