Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 11, Novembre 2002
Page(s) 1137 - 1145
Section M/S Revues – Série Thématique : Trafic Intracellulaire (2)
DOI https://doi.org/10.1051/medsci/200218111137
Publié en ligne 15 novembre 2002
  1. Martin TFJ. Phospho-inositide lipids as signal molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 1998; 14: 231–64. [Google Scholar]
  2. Simonsen A, Wurmser AE, Emr SD, Stenmark H. The role of phospho-inositides in membrane transport. Curr Opin Cell Biol 2001; 13: 485–92. [Google Scholar]
  3. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phospho-inositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 1997; 22: 267–72. [Google Scholar]
  4. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostatsis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615–75. [Google Scholar]
  5. Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 1993; 75: 1137–44. [Google Scholar]
  6. Schmidt A, Wolde M, Thiele C, et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 1999; 401: 133–41. [Google Scholar]
  7. Hurley JH, MeyerT. Subcellular targeting by membrane lipids. Curr Opin Cell Biol 2001; 13: 146–52. [Google Scholar]
  8. Maffucci T, FalascaM. Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phospho-inositideprotein co-operative mechanism. FEBS Lett 2001; 506: 173–9. [Google Scholar]
  9. Sato TK, Overduin M, Emr SD. Location, location, location: membrane targeting directed by PX domains. Science 2001; 294: 1881–5. [Google Scholar]
  10. Simonsen A, Stenmark H. PX domains: attracted by phospho-inositides. Nat Cell Biol 2001; 3: E179–82. [Google Scholar]
  11. Donaldson JG, Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 2000; 12: 475–82. [Google Scholar]
  12. Stack JH, Emr SD. Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositolspecific PI 3-kinase activities. J Biol Chem 1994; 269: 31552–62. [Google Scholar]
  13. Gaffet P, Jones AT, Clague MJ. Inhibition of calciumindependent mannose 6-phosphate receptor incorporation into trans-Golgi network-derived clathrin-coated vesicles by wortmannin. J Biol Chem 1997; 272: 24170–5. [Google Scholar]
  14. Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH. Arrestin function in G protein-coupled receptor endocytosis requires phospho-inositide binding. EMBO J 1999; 18: 871–81. [Google Scholar]
  15. Hirst J, Robinson MS. Clathrin and adaptors. Biochem Biophys Acta 1998; 1404: 173–93. [Google Scholar]
  16. Ford MG, Pearse BM, Higgins MK, et al. Simultaneous binding of PtdIns (4,5) P 2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291: 1051–5. [Google Scholar]
  17. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291: 1047–51. [Google Scholar]
  18. Gaidarov I, Smith MEK, Domin J, Keen JH. The class II phospho-inositide 3-kinase C2α is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 2001; 7: 443–9. [Google Scholar]
  19. Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH. A functionalphosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 subunit. Implications for the endocytic pathway. J Biol Chem 1996; 271: 20922–9. [Google Scholar]
  20. Gillooly DJ, Simonsen A, Stenmark H. Phosphoinositides and phagocytosis. J Cell Biol 2001; 155: 15–7. [Google Scholar]
  21. Marshall JG, Booth JW, Stambolic V, et al. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptormediated phagocytosis. J Cell Biol 2001; 153: 1369–80. [Google Scholar]
  22. Botelho RJ, Teruel M, Dierckman R, et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 2000; 151: 1353–68. [Google Scholar]
  23. Schmid SL, McNiven MA, De Camilli P. Dynamin and its partners: a progress report. Curr Opin Cell Biol 1998; 10: 504–12. [Google Scholar]
  24. De Camilli P, Emr SD, McPherson PS, Novick P. Phospho-inositides as regulators in membrane traffic. Science 1996; 271: 1533–9. [Google Scholar]
  25. Martin TFJ. Phosphoinositides as spatial regulators of membrane traffic. Curr Opin Neurobiol 1997; 7: 331–8. [Google Scholar]
  26. Niggli V. Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 2001; 26: 604–11. [Google Scholar]
  27. Lorra C, Huttner WB. The mesh hypothesis of Golgi dynamics. Nat Cell Biol 1999; 1: E113–5. [Google Scholar]
  28. Tüscher O, Lorra C, Bouma B, et al. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN - phosphoinositides as a common denominator? FEBS Lett 1997; 419: 271–5. [Google Scholar]
  29. Godi A, Pertile P, Meyers R, et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns (4,5) P2on the Golgi complex. Nat Cell Biol 1999; 1: 280–7. [Google Scholar]
  30. Walch-Solimena C, Novick P. The yeastphosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi. Nat Cell Biol 1999; 1: 523–5. [Google Scholar]
  31. Huijbregts RPH, Topalof L, Bankaitis VA. Lipid metabolism and regulation of membrane trafficking. Traffic 2000; 1: 195–202. [Google Scholar]
  32. Burger KJ. Greasing membrane fusion and fission machineries. Traffic 2000; 1: 605–13. [Google Scholar]
  33. Huttner WB, Schmidt A. lipids, lipid modification and lipid-protein interaction in membrane budding and fissioninsights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr Opin Neurobiol 2000; 10: 543–51. [Google Scholar]
  34. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayerinteractions. J Cell Biol 2001; 155: 193–200. [Google Scholar]
  35. Huttner WB, Schmidt A. Membrane curvature: a case of endofeelin’em leader. Trends Cell Biol 2002; 12: 155–8. [Google Scholar]
  36. Cremona O, De Camilli P. Phospho-inositides in membrane traffic at the synapse. J Cell Sci 2001; 114: 1041–52. [Google Scholar]
  37. Wenk MR, Pellegrini L, Klenchin VA, et al. PIP kinase Ig is the major PI (4,5) P2 synthesizing enzyme at the synapse. Neuron 2001; 32: 79–88. [Google Scholar]
  38. Cremona O, Di Paolo G, Wenk MR, et al. Essential role of phospho-inositide metabolism in synaptic vesicle recycling. Cell 1999; 99: 179–88. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.