Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 11, Novembre 2002
Page(s) 1126 - 1136
Section M/S Revues – Série Thématique : Trafic Intracellulaire (2)
Publié en ligne 15 novembre 2002
  1. Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2001; 17: 517–68. [Google Scholar]
  2. Geli MI, Riezman H. Endocytic internalization in yeast and animal cells: similar and different. J Cell Sci 1998; 111: 1031–7. [Google Scholar]
  3. Kirchhausen T. Clathrin. Annu Rev Biochem 2000; 69: 699–727. [Google Scholar]
  4. Kirchhausen T. Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 1999; 15: 705–32. [Google Scholar]
  5. Davis CG, Lehrman MA, Russell DW, Anderson RG, Brown MS, Goldstein JL. The JD mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 1986; 45: 15–24. [Google Scholar]
  6. Bonifacino JS, Dell’Angelica EC. Molecular bases for the recognition of tyrosinebased sorting signals. J Cell Biol 1999; 145: 923–6. [Google Scholar]
  7. Pierce KL, Lefkowitz RJ. Classical and new roles of beta-arrestins in the regulation of G-proteincoupled receptors. Nat Rev Neurosci 2001; 2: 727–33. [Google Scholar]
  8. Morris SM, Cooper JA. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2001; 2: 111–23. [Google Scholar]
  9. Gaidarov I, Keen JH. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J Cell Biol 1999; 146: 755–64. [Google Scholar]
  10. Takei K, Haucke V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 2001; 11: 385–91. [Google Scholar]
  11. Gaidarov I, Santini F, Warren RA, Keen JH. Spatial control of coated-pit dynamics in living cells. Nat Cell Biol 1999; 1 : 1–7. [Google Scholar]
  12. Schmid SL, McNiven MA, De Camilli P. Dynamin and its partners: a progress report. Curr Opin Cell Biol 1998; 10: 504–12. [Google Scholar]
  13. Sweitzer SM, Hinshaw JE. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 1998; 93: 1021–9. [Google Scholar]
  14. McNiven MA, Cao H, Pitts KR, Yoon Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci 2000; 25: 115–20. [Google Scholar]
  15. Salcini AE, Confalonieri S, Doria EM, et al. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev 1997; 11: 2239–49. [Google Scholar]
  16. Chen H, Fre S, Slepnev VI, et al. Epsin is an EH-domain-binding protein implicated in clathrinmediated endocytosis. Nature 1998; 394: 793–7. [Google Scholar]
  17. Benmerah A, Bègue B, Dautry-Varsat A, Cerf-Bensussan N. The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps15 protein. J Biol Chem 1996; 271: 12111–6. [Google Scholar]
  18. Owen DJ, Vallis Y, Noble ME, et al. A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell 1999; 97: 805–15. [Google Scholar]
  19. Benmerah A, Lamaze C, Bègue B, Schmid SL, Dautry-Varsat A, Cerf-Bensussan N. AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J Cell Biol 1998; 140: 1055–62. [Google Scholar]
  20. Benmerah A, Bayrou M, Cerf-Bensussan N, Dautry-Varsat A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 1999; 112: 1303–11. [Google Scholar]
  21. Ford MG, Pearse BM, Higgins MK, et al. Simultaneous binding of PtdIns (4,5) P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291: 1051–5. [Google Scholar]
  22. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291: 1047–51. [Google Scholar]
  23. Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, Bellen HJ. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 1998; 21: 1465–75. [Google Scholar]
  24. Schafer DA. Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 2002; 14: 76–81. [Google Scholar]
  25. Yamabhai M, Hoffman NG, Hardison NL, et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem 1998; 273: 31401–7. [Google Scholar]
  26. Roos J, Kelly RB. Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J Biol Chem 1998; 273: 19108–19. [Google Scholar]
  27. Hussain NK, Jenna S, Glogauer M, et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 2001; 3: 927–32. [Google Scholar]
  28. Lamaze C, Fujimoto LM, Yin HL, Schmid SL. Actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J Biol Chem 1997; 272: 20332–5. [Google Scholar]
  29. Takei K, Slepnev VI, Haucke V, De Camilli P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1999; 1 : 33–9. [Google Scholar]
  30. Farsad, K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 2001; 155: 193–200. [Google Scholar]
  31. Shupliakov O, Low P, Grabs D, et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 1997; 276: 259–63. [Google Scholar]
  32. Palade GE. The fine structure of blood capillaries. J Appl Phys 1953; 24: 1424. [Google Scholar]
  33. Huet C, Ash JF, Singer SJ. The antibody-induced clustering and endocytosis of HLA antigens on cultured human fibroblasts. Cell 1980; 21: 429–38. [Google Scholar]
  34. Lamaze C, Schmid SL. The emergence of clathrinindependent pinocytic pathways. Curr Opin Cell Biol 1995; 7: 573–80. [Google Scholar]
  35. Damke H, Baba T, van der Bliek AM, Schmid SL. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 1995; 131: 69–80. [Google Scholar]
  36. Lamaze C, Dujeancourt A, Baba T, Lo C, Benmerah A, Dautry-Varsat A. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001; 7: 661–71. [Google Scholar]
  37. Nichols BJ, Kenworthy AK, Polishchuk R, et al. Rapid cycling of lipid rafts markers between the cell surface and Golgi complex. J Cell Biol 2001; 153: 529–41. [Google Scholar]
  38. Honda A, Nogami M, Yokozeki T, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 1999; 5: 521–32. [Google Scholar]
  39. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol 1997; 15: 821–50. [Google Scholar]
  40. Marechal V, Prevost MC, Petit C, Perret E, Heard JM, Schwartz O. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J Virol 2001; 75: 11166–77. [Google Scholar]
  41. Watarai M, Derre I, Kirby J, Growney JD, Dietrich WF, Isberg RR. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 2001; 194: 1081–96. [Google Scholar]
  42. West M, Bretscher M, Watts C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol 1989; 109: 2731–9. [Google Scholar]
  43. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68: 673–82. [Google Scholar]
  44. Thomsen P, Roepstorff K, Stahlhut M, van Deurs B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 2002; 13: 238–50. [Google Scholar]
  45. Kurzchalia TV, Parton RG. Membrane microdomains and caveolae. Curr Opin Cell Biol 1999; 11: 424–31. [Google Scholar]
  46. Lobie PE, Sadir R, Graichen R, Mertani C. Caveolar internalization of growth hormone. Exp Cell Res 1999; 246: 47–55. [Google Scholar]
  47. Le PU, Guay G, Altschuler Y, Nabi IR. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 2002; 277: 3371–9. [Google Scholar]
  48. Brown DA, London E. Structure and function of sphingolipid and cholesterol-rich membrane rafts. J Biol Chem 2000; 275: 17221–4. [Google Scholar]
  49. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev 2000; 1 : 31–9. [Google Scholar]
  50. Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998; 141: 905–15. [Google Scholar]
  51. Falguières T, Baron C, Mallard F, et al. Targeting of Shiga toxin B-subunit to the retrograde transport route in association with detergent resistant membranes. Mol Biol Cell 2001; 12: 2453–68. [Google Scholar]
  52. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. Extraction of cholesterol with methyl-betacyclodextrin perturbs formation of clathrincoated endocytic vesicles. Mol Biol Cell 1999; 10: 961–74. [Google Scholar]
  53. Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 1999; 96: 6775–80. [Google Scholar]
  54. Ceresa BP, Schmid SL. Regulation of signal transduction by endocytosis. Curr Opin Cell Biol 2000; 12: 204–10. [Google Scholar]
  55. DiFiore PP, De Camilli P. Endocytosis and signaling: an inseparable partnership. Cell 2001; 106: 1–4. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.