Free Access
Med Sci (Paris)
Volume 18, Number 11, Novembre 2002
Page(s) 1121 - 1125
Section M/S Revues – Série Thématique : Trafic Intracellulaire (2)
Published online 15 November 2002
  1. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of the active zone material at the frog’s neuromuscular junction. Nature 2001; 409: 479–84. [Google Scholar]
  2. Llinas R, Sugimori M, Silver RB. Microdomains of high calcium concentration in a presynaptic terminal. Science 1992; 256: 677–9. [Google Scholar]
  3. Llinas R, Steinberg IZ, Walton K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 1981; 33: 323–51. [Google Scholar]
  4. Wickner W, Haas A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu Rev Biochem 2000; 69: 247–75. [Google Scholar]
  5. Nelson N, Harvey WR. Vacuolar and plasma membrane proton-adenosine triphosphatases. Physiol Rev 1999; 79: 361–85. [Google Scholar]
  6. Morel N, Gérard V, Shiff G. Vacuolar H+ ATPase domains are transported separately in axons and assemble in Torpedo nerve endings. J Neurochem 1998; 71: 1702–8. [Google Scholar]
  7. Yamagata SK, Parsons SM. Cholinergic synaptic vesicles contain a V-type and a P-type ATPase. J Neurochem 1989; 53: 1354–62. [Google Scholar]
  8. Michaelson DM, Angel I. Determination of ∆pH in cholinergic synaptic vesicles: its effects on storage and release of acetylcholine. Life Sci 1980 : 27: 39–44. [Google Scholar]
  9. Varoqui H, Erickson JD. Vesicular neurotransmitter transporters. Mol Neurobiol 1997; 15: 165–92. [Google Scholar]
  10. Ohsawa K, Dowe GHC, Morris SJ, Whittaker VP. The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implication for vesicular structure. Brain Res 1979; 161: 447–57. [Google Scholar]
  11. Suskiw JB, Zimmermann H, Whittaker VP. Vesicular storage and release of acetylcholine in Torpedo electroplaque synapses. J Neurochem 1978; 30: 1269–80. [Google Scholar]
  12. Koenig JH, Ikeda K. Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. J Neurophysiol 1999; 81: 1495–505. [Google Scholar]
  13. Südhof TC. The synaptic vesicle cycle revisited. Neuron 2000; 28: 317–20. [Google Scholar]
  14. Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 2000; 28: 221–31. [Google Scholar]
  15. Van der Kloot W, Molgo J. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 1994; 74: 899–991. [Google Scholar]
  16. Mayer A. What drives membrane fusion in eukaryotes? Trends Biochem Sci 2001; 26: 717–23. [Google Scholar]
  17. Bruns D, Jahn R. Molecular determinants of exocytosis. Pflug Arch 2002; 443: 333–8. [Google Scholar]
  18. Lindau M, Almers W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol 1995; 7: 509–17. [Google Scholar]
  19. Alvarez de Toledo G, Fernandez-Chacon R, Fernandez JM. Release of secretory products during transient vesicle fusion. Nat 1993; 363: 554–8. [Google Scholar]
  20. Ales E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the «kiss and run» mechanism. Nat Cell Biol 1999; 1 : 40–4. [Google Scholar]
  21. Henkel AW, Betz WJ. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J Neurosci 1995; 15: 8246–58. [Google Scholar]
  22. Scepek S, Coorssen JR, Lindau M. Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms. EMBO J 1998; 17: 4340–5. [Google Scholar]
  23. Henkel AW, Kang G, Kornhuber J. A common molecular machinery for exocytosis and the “kiss and run” mechanism in chromaffin cells is controlled by phosphorylation. J Cell Sci 2001; 114: 4613–20. [Google Scholar]
  24. Zimmerberg J. How can proteolipids be central players in membrane fusion? Trends Cell Biol 2001; 11: 233–35. [Google Scholar]
  25. Israël M, Morel N, Lesbats B, Birman S, Manaranche R. Purification of a presynaptic protein that mediates a calcium dependent translocation of acetylcholine. Proc Natl Acad Sci USA 1986; 83: 9226–30. [Google Scholar]
  26. Falk-Vairant J, Corrèges P, Eder-Colli L, et al. Quantal acetylcholine release induced by mediatophore transfection. Proc Natl Acad Sci USA 1996; 93: 5203–7. [Google Scholar]
  27. Morel N, Dunant Y, Israël M. Neurotransmitter release through the V0 sector of V-ATPase. J Neurochem 2001; 79: 485–8. [Google Scholar]
  28. Peters C, Bayer MJ, Bühler S, Andersen JS, Mann M, Mayer A. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 2001; 409: 581–8. [Google Scholar]
  29. Leng XH, Nishi T, Forgac M. Transmembrane topography of the 100 kDa a subunit (Vph1p) of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1999; 274: 14655–61. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.