Free Access
Med Sci (Paris)
Volume 18, Number 11, Novembre 2002
Page(s) 1113 - 1119
Section M/S Revues – Série Thématique : Trafic Intracellulaire (2)
Published online 15 November 2002
  1. Galli T, Haucke V. Cycling of synaptic vesicles: how far? How fast! Sci STKE 2001; 88: RE1. [Google Scholar]
  2. Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362: 318–24. [Google Scholar]
  3. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 1998; 395: 347–53. [Google Scholar]
  4. Hayashi T, McMahon H, Yamasaki S, et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 1994; 13: 5051–61. [Google Scholar]
  5. Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 2002; 9: 107–11. [Google Scholar]
  6. Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem 1999; 68: 863–911. [Google Scholar]
  7. Niemann H, Blasi J, Jahn R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 1994; 4: 179–85. [Google Scholar]
  8. Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 1994; 13 : 1–8. [Google Scholar]
  9. Galli T, Chilcote T, Mundigl O, Binz T, Niemann H, De Camilli P. Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J Cell Biol 1994; 125: 1015–24. [Google Scholar]
  10. Leung SM, Chen D, DasGupta BR, Whiteheart SW, Apodaca G. SNAP-23 requirement for transferrin recycling in streptolysin-O-permeabilized Madin-Darby canine kidney cells. J Biol Chem 1998; 273: 17732–41. [Google Scholar]
  11. Ferro-Novick S, Jahn R. Vesicle fusion from yeast to man. Nature 1994; 370: 191–3. [Google Scholar]
  12. Littleton JT. A genomic analysis of membrane trafficking and neurotransmitter release in Drosophila.J Cell Biol 2000; 150: F77–82. [Google Scholar]
  13. Schoch S, Deak F, Konigstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001; 294: 1117–22. [Google Scholar]
  14. Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002; 5 : 19–26. [Google Scholar]
  15. Martinez-Arca S, Coco S, Mainguy G, et al. A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci 2001; 21: 3830–8. [Google Scholar]
  16. Bock JB, Matern HT, Peden AA, Scheller RH. A genomic perspective on membrane compartment organization. Nature 2001; 409: 839–41. [Google Scholar]
  17. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998; 92: 759–72. [Google Scholar]
  18. McNew JA, Parlati F, Fukuda R, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000; 407: 153–9. [Google Scholar]
  19. Nickel W, Weber T, McNew JA, Parlati F, Sollner TH, Rothman JE. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc Natl Acad Sci USA 1999; 96: 12571–6. [Google Scholar]
  20. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 2001; 409: 581–8. [Google Scholar]
  21. Israel M, Morel N. Mediatophore: a nerve terminal membrane protein supporting the final step of the acetylcholine release process. Prog Brain Res 1990; 84: 101–10. [Google Scholar]
  22. Galli T, McPherson PS, De Camilli P. The V0 sector of the V-ATPase, synaptobrevin and synaptophysin are associated on synaptic vesicles in a triton X-100 resistant, freeze-thawing sensitive complex. J Biol Chem 1996; 271: 2193–9. [Google Scholar]
  23. Finger FP, Novick P. Spatial regulation of exocytosis: lessons from yeast. J Cell Biol 1998; 142: 609–12. [Google Scholar]
  24. Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA. The exocyst is a Ral effector complex. Nat Cell Biol 2002; 4: 66–72. [Google Scholar]
  25. Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ. The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem 2001; 276: 29792–7. [Google Scholar]
  26. Hsu SC, Ting AE, Hazuka CD, et al. The mammalian brain rsec6/8 complex. Neuron 1996; 17: 1209–19. [Google Scholar]
  27. Hazuka CD, Foletti DL, Hsu SC, Kee Y, Hopf FW, Scheller RH. The sec6/8 complex is located at neurite out growth and axonal synapse-assembly domains. J Neurosci 1999; 19: 1324–34. [Google Scholar]
  28. Grindstaff KK, Yeaman C, Anandasabapathy N, et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 1998; 93: 731–40. [Google Scholar]
  29. Whyte JR, Munro S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 2001; 1: 527–37. [Google Scholar]
  30. Sacher M, Barrowman J, Wang W, et al. TRAPP I implicated in the specificity of tethering in ER- to-Golgi transport. Mol Cell 2001; 7: 433–42. [Google Scholar]
  31. Christoforidis S, McBride HM, Burgoyne RD, Zerial M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999; 397: 621–5. [Google Scholar]
  32. Seemann J, Jokitalo EJ, Warren G. The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol Biol Cell 2000; 11: 635–45. [Google Scholar]
  33. Misura KMS, Scheller RH, Weis WI. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 2000; 404: 355–62. [Google Scholar]
  34. Verhage M, Maia AS, Plomp JJ, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000; 287: 864–9. [Google Scholar]
  35. Ashery U, Varoqueaux F, Voets T, et al. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 2000; 19: 3586–96. [Google Scholar]
  36. Schoch S, Castillo PE, Jo T, et al. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 2002; 415: 321–6. [Google Scholar]
  37. Davis AF, Bai JH, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 1999; 24: 363–76. [Google Scholar]
  38. Charvin N, Leveque C, Walker D, et al. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha (1) A subunit of the P/Q-type calcium channel. EMBO J 1997; 16: 4591–6. [Google Scholar]
  39. Schivell AE, Batchelor RH, Bajjalieh SM. Isoform-spe-cific, calcium-regulated interaction of the synaptic vesicle proteins SV2 and synaptotagmin. J Biol Chem 1996; 271: 27770–5. [Google Scholar]
  40. Fernandez-Chacon R, Konigstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001; 410: 41–9. [Google Scholar]
  41. Wang CT, Grishanin R, Earles CA, et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 2001; 294: 1111–5. [Google Scholar]
  42. Mayer A, Wickner W, Haas A. Sec18p (NSF)-driven release of sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 1996; 85: 83–94. [Google Scholar]
  43. Littleton JT, Barnard RJO, Titus SA, Slind J, Chapman ER, Ganetzky B. Snarecomplex disassembly by nsf follows synaptic vesicle fusion. Proc Nat Acad Sci USA 2001; 98: 12233–8. [Google Scholar]
  44. Sankaranarayanan S, Ryan TA. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat Neurosci 2001; 4: 129–36. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.