Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 11, Novembre 2002
Page(s) 1113 - 1119
Section M/S Revues – Série Thématique : Trafic Intracellulaire (2)
DOI https://doi.org/10.1051/medsci/200218111113
Publié en ligne 15 novembre 2002
  1. Galli T, Haucke V. Cycling of synaptic vesicles: how far? How fast! Sci STKE 2001; 88: RE1. [Google Scholar]
  2. Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362: 318–24. [Google Scholar]
  3. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 1998; 395: 347–53. [Google Scholar]
  4. Hayashi T, McMahon H, Yamasaki S, et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 1994; 13: 5051–61. [Google Scholar]
  5. Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 2002; 9: 107–11. [Google Scholar]
  6. Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem 1999; 68: 863–911. [Google Scholar]
  7. Niemann H, Blasi J, Jahn R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 1994; 4: 179–85. [Google Scholar]
  8. Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 1994; 13 : 1–8. [Google Scholar]
  9. Galli T, Chilcote T, Mundigl O, Binz T, Niemann H, De Camilli P. Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J Cell Biol 1994; 125: 1015–24. [Google Scholar]
  10. Leung SM, Chen D, DasGupta BR, Whiteheart SW, Apodaca G. SNAP-23 requirement for transferrin recycling in streptolysin-O-permeabilized Madin-Darby canine kidney cells. J Biol Chem 1998; 273: 17732–41. [Google Scholar]
  11. Ferro-Novick S, Jahn R. Vesicle fusion from yeast to man. Nature 1994; 370: 191–3. [Google Scholar]
  12. Littleton JT. A genomic analysis of membrane trafficking and neurotransmitter release in Drosophila.J Cell Biol 2000; 150: F77–82. [Google Scholar]
  13. Schoch S, Deak F, Konigstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001; 294: 1117–22. [Google Scholar]
  14. Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002; 5 : 19–26. [Google Scholar]
  15. Martinez-Arca S, Coco S, Mainguy G, et al. A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci 2001; 21: 3830–8. [Google Scholar]
  16. Bock JB, Matern HT, Peden AA, Scheller RH. A genomic perspective on membrane compartment organization. Nature 2001; 409: 839–41. [Google Scholar]
  17. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998; 92: 759–72. [Google Scholar]
  18. McNew JA, Parlati F, Fukuda R, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000; 407: 153–9. [Google Scholar]
  19. Nickel W, Weber T, McNew JA, Parlati F, Sollner TH, Rothman JE. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc Natl Acad Sci USA 1999; 96: 12571–6. [Google Scholar]
  20. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 2001; 409: 581–8. [Google Scholar]
  21. Israel M, Morel N. Mediatophore: a nerve terminal membrane protein supporting the final step of the acetylcholine release process. Prog Brain Res 1990; 84: 101–10. [Google Scholar]
  22. Galli T, McPherson PS, De Camilli P. The V0 sector of the V-ATPase, synaptobrevin and synaptophysin are associated on synaptic vesicles in a triton X-100 resistant, freeze-thawing sensitive complex. J Biol Chem 1996; 271: 2193–9. [Google Scholar]
  23. Finger FP, Novick P. Spatial regulation of exocytosis: lessons from yeast. J Cell Biol 1998; 142: 609–12. [Google Scholar]
  24. Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA. The exocyst is a Ral effector complex. Nat Cell Biol 2002; 4: 66–72. [Google Scholar]
  25. Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ. The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem 2001; 276: 29792–7. [Google Scholar]
  26. Hsu SC, Ting AE, Hazuka CD, et al. The mammalian brain rsec6/8 complex. Neuron 1996; 17: 1209–19. [Google Scholar]
  27. Hazuka CD, Foletti DL, Hsu SC, Kee Y, Hopf FW, Scheller RH. The sec6/8 complex is located at neurite out growth and axonal synapse-assembly domains. J Neurosci 1999; 19: 1324–34. [Google Scholar]
  28. Grindstaff KK, Yeaman C, Anandasabapathy N, et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 1998; 93: 731–40. [Google Scholar]
  29. Whyte JR, Munro S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 2001; 1: 527–37. [Google Scholar]
  30. Sacher M, Barrowman J, Wang W, et al. TRAPP I implicated in the specificity of tethering in ER- to-Golgi transport. Mol Cell 2001; 7: 433–42. [Google Scholar]
  31. Christoforidis S, McBride HM, Burgoyne RD, Zerial M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999; 397: 621–5. [Google Scholar]
  32. Seemann J, Jokitalo EJ, Warren G. The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol Biol Cell 2000; 11: 635–45. [Google Scholar]
  33. Misura KMS, Scheller RH, Weis WI. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 2000; 404: 355–62. [Google Scholar]
  34. Verhage M, Maia AS, Plomp JJ, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000; 287: 864–9. [Google Scholar]
  35. Ashery U, Varoqueaux F, Voets T, et al. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 2000; 19: 3586–96. [Google Scholar]
  36. Schoch S, Castillo PE, Jo T, et al. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 2002; 415: 321–6. [Google Scholar]
  37. Davis AF, Bai JH, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 1999; 24: 363–76. [Google Scholar]
  38. Charvin N, Leveque C, Walker D, et al. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha (1) A subunit of the P/Q-type calcium channel. EMBO J 1997; 16: 4591–6. [Google Scholar]
  39. Schivell AE, Batchelor RH, Bajjalieh SM. Isoform-spe-cific, calcium-regulated interaction of the synaptic vesicle proteins SV2 and synaptotagmin. J Biol Chem 1996; 271: 27770–5. [Google Scholar]
  40. Fernandez-Chacon R, Konigstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001; 410: 41–9. [Google Scholar]
  41. Wang CT, Grishanin R, Earles CA, et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 2001; 294: 1111–5. [Google Scholar]
  42. Mayer A, Wickner W, Haas A. Sec18p (NSF)-driven release of sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 1996; 85: 83–94. [Google Scholar]
  43. Littleton JT, Barnard RJO, Titus SA, Slind J, Chapman ER, Ganetzky B. Snarecomplex disassembly by nsf follows synaptic vesicle fusion. Proc Nat Acad Sci USA 2001; 98: 12233–8. [Google Scholar]
  44. Sankaranarayanan S, Ryan TA. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat Neurosci 2001; 4: 129–36. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.