Free Access
Med Sci (Paris)
Volume 18, Number 11, Novembre 2002
Page(s) 1137 - 1145
Section M/S Revues – Série Thématique : Trafic Intracellulaire (2)
Published online 15 November 2002
  1. Martin TFJ. Phospho-inositide lipids as signal molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 1998; 14: 231–64. [Google Scholar]
  2. Simonsen A, Wurmser AE, Emr SD, Stenmark H. The role of phospho-inositides in membrane transport. Curr Opin Cell Biol 2001; 13: 485–92. [Google Scholar]
  3. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phospho-inositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 1997; 22: 267–72. [Google Scholar]
  4. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostatsis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615–75. [Google Scholar]
  5. Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 1993; 75: 1137–44. [Google Scholar]
  6. Schmidt A, Wolde M, Thiele C, et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 1999; 401: 133–41. [Google Scholar]
  7. Hurley JH, MeyerT. Subcellular targeting by membrane lipids. Curr Opin Cell Biol 2001; 13: 146–52. [Google Scholar]
  8. Maffucci T, FalascaM. Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phospho-inositideprotein co-operative mechanism. FEBS Lett 2001; 506: 173–9. [Google Scholar]
  9. Sato TK, Overduin M, Emr SD. Location, location, location: membrane targeting directed by PX domains. Science 2001; 294: 1881–5. [Google Scholar]
  10. Simonsen A, Stenmark H. PX domains: attracted by phospho-inositides. Nat Cell Biol 2001; 3: E179–82. [Google Scholar]
  11. Donaldson JG, Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 2000; 12: 475–82. [Google Scholar]
  12. Stack JH, Emr SD. Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositolspecific PI 3-kinase activities. J Biol Chem 1994; 269: 31552–62. [Google Scholar]
  13. Gaffet P, Jones AT, Clague MJ. Inhibition of calciumindependent mannose 6-phosphate receptor incorporation into trans-Golgi network-derived clathrin-coated vesicles by wortmannin. J Biol Chem 1997; 272: 24170–5. [Google Scholar]
  14. Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH. Arrestin function in G protein-coupled receptor endocytosis requires phospho-inositide binding. EMBO J 1999; 18: 871–81. [Google Scholar]
  15. Hirst J, Robinson MS. Clathrin and adaptors. Biochem Biophys Acta 1998; 1404: 173–93. [Google Scholar]
  16. Ford MG, Pearse BM, Higgins MK, et al. Simultaneous binding of PtdIns (4,5) P 2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291: 1051–5. [Google Scholar]
  17. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291: 1047–51. [Google Scholar]
  18. Gaidarov I, Smith MEK, Domin J, Keen JH. The class II phospho-inositide 3-kinase C2α is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 2001; 7: 443–9. [Google Scholar]
  19. Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH. A functionalphosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 subunit. Implications for the endocytic pathway. J Biol Chem 1996; 271: 20922–9. [Google Scholar]
  20. Gillooly DJ, Simonsen A, Stenmark H. Phosphoinositides and phagocytosis. J Cell Biol 2001; 155: 15–7. [Google Scholar]
  21. Marshall JG, Booth JW, Stambolic V, et al. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptormediated phagocytosis. J Cell Biol 2001; 153: 1369–80. [Google Scholar]
  22. Botelho RJ, Teruel M, Dierckman R, et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 2000; 151: 1353–68. [Google Scholar]
  23. Schmid SL, McNiven MA, De Camilli P. Dynamin and its partners: a progress report. Curr Opin Cell Biol 1998; 10: 504–12. [Google Scholar]
  24. De Camilli P, Emr SD, McPherson PS, Novick P. Phospho-inositides as regulators in membrane traffic. Science 1996; 271: 1533–9. [Google Scholar]
  25. Martin TFJ. Phosphoinositides as spatial regulators of membrane traffic. Curr Opin Neurobiol 1997; 7: 331–8. [Google Scholar]
  26. Niggli V. Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 2001; 26: 604–11. [Google Scholar]
  27. Lorra C, Huttner WB. The mesh hypothesis of Golgi dynamics. Nat Cell Biol 1999; 1: E113–5. [Google Scholar]
  28. Tüscher O, Lorra C, Bouma B, et al. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN - phosphoinositides as a common denominator? FEBS Lett 1997; 419: 271–5. [Google Scholar]
  29. Godi A, Pertile P, Meyers R, et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns (4,5) P2on the Golgi complex. Nat Cell Biol 1999; 1: 280–7. [Google Scholar]
  30. Walch-Solimena C, Novick P. The yeastphosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi. Nat Cell Biol 1999; 1: 523–5. [Google Scholar]
  31. Huijbregts RPH, Topalof L, Bankaitis VA. Lipid metabolism and regulation of membrane trafficking. Traffic 2000; 1: 195–202. [Google Scholar]
  32. Burger KJ. Greasing membrane fusion and fission machineries. Traffic 2000; 1: 605–13. [Google Scholar]
  33. Huttner WB, Schmidt A. lipids, lipid modification and lipid-protein interaction in membrane budding and fissioninsights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr Opin Neurobiol 2000; 10: 543–51. [Google Scholar]
  34. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayerinteractions. J Cell Biol 2001; 155: 193–200. [Google Scholar]
  35. Huttner WB, Schmidt A. Membrane curvature: a case of endofeelin’em leader. Trends Cell Biol 2002; 12: 155–8. [Google Scholar]
  36. Cremona O, De Camilli P. Phospho-inositides in membrane traffic at the synapse. J Cell Sci 2001; 114: 1041–52. [Google Scholar]
  37. Wenk MR, Pellegrini L, Klenchin VA, et al. PIP kinase Ig is the major PI (4,5) P2 synthesizing enzyme at the synapse. Neuron 2001; 32: 79–88. [Google Scholar]
  38. Cremona O, Di Paolo G, Wenk MR, et al. Essential role of phospho-inositide metabolism in synaptic vesicle recycling. Cell 1999; 99: 179–88. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.