Free Access
Med Sci (Paris)
Volume 17, Number 11, Novembre 2001
Page(s) 1149 - 1157
Section Articles de Synthèse
Published online 15 November 2001
  1. Cummings CJ, Zoghbi HY. Fourteen and counting : unraveling trinucleotide repeat diseases. Hum Mol Genet 2000; 9 : 909–16. [Google Scholar]
  2. Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci 2000; 23 : 217–47. [Google Scholar]
  3. Gerber HP, Seipel K, Georgiev O, et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 1994; 263 : 808–11. [Google Scholar]
  4. Shimohata T, Onodera O, Tsuji S. Interaction of expanded polyglutamine stretches with nuclear transcription factors leads to aberrant transcriptional regulation in polyglutamine diseases. Neuropathology 2000; 20 : 326–33. [Google Scholar]
  5. Ambrose CM, Duyao MP, Barnes G, et al. Structure and expression of the Huntington’s disease gene : evidence against simple inactivation due to an expanded CAG repeat. Somat Cell Mol Genet 1994; 20 : 27–38. [Google Scholar]
  6. Wexler NS, Young AB, Tanzi RE, et al. Homozygotes for Huntington’s disease. Nature 1987; 326 : 194–7. [Google Scholar]
  7. Durr A, Hahn-Barma V, Brice A, Pecheux C, Dode C, Feingold J. Homozygosity in Huntington’s disease. J Med Genet 1999; 36 : 172–3. [Google Scholar]
  8. Sato K, Kashihara K, Okada S, et al. Does homozygosity advance the onset of dentatorubral-pallidoluysian atrophy ? Neurology 1995; 45 : 1934–6. [Google Scholar]
  9. Quigley CA, Friedman KJ, Johnson A, et al. Complete deletion of the androgen receptor gene : definition of the null phenotype of the androgen insensitivity syndrome and determination of carrier status. J Clin Endocrinol Metab 1992; 74 : 927–33. [Google Scholar]
  10. Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark AW. The neuropathology of CAG repeat diseases : review and update of genetic and molecular features. Brain Pathol 1997; 7 : 901–26. [Google Scholar]
  11. Hodgson JG, Smith DJ, McCutcheon K, et al. Human huntingtin derived from YAC transgenes compensates for loss of murine huntingtin by rescue of the embryonic lethal phenotype. Hum Mol Genet 1996; 5 : 1875–85. [Google Scholar]
  12. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S. Loss of normal huntingtin function : new developments in Huntington’s disease research. Trends Neurosci 2001; 24 : 182–8. [Google Scholar]
  13. Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions (NII) underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90 : 537–48. [Google Scholar]
  14. Paulson HL. Toward an understanding of polyglutamine neurodegeneration. Brain Pathol 2000; 10 : 293–9. [Google Scholar]
  15. Scherzinger E, Sittler A, Schweiger K, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils : implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 1999; 96 : 4604–9. [Google Scholar]
  16. Yvert G, Lindenberg KS, Picaud S, Landwehrmeyer GB, Sahel JA, Mandel JL. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet 2000; 9 : 2491–506. [Google Scholar]
  17. Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 2000; 101 : 57–66. [Google Scholar]
  18. Klement IA, Skinner PJ, Kaytor MD, et al. Ataxin-1 nuclear localization and aggregation : role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 1998; 95 : 41–53. [Google Scholar]
  19. Gutekunst CA, Li SH, Yi H, et al. Nuclear and neuropil aggregates in Huntington’s disease : relationship to neuropathology. J Neurosci 1999; 19 : 2522–34. [Google Scholar]
  20. Li M, Nakagomi Y, Kobayashi Y, et al. Nonneural nuclear inclusions of androgen receptor protein in spinal and bulbar muscular atrophy. Am J Pathol 1998; 153 : 695–701. [Google Scholar]
  21. Sathasivam K, Hobbs C, Turmaine M, et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 1999; 8 : 813–22. [Google Scholar]
  22. Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95 : 55–66. [Google Scholar]
  23. Toru S, Murakoshi T, Ishikawa K, et al. Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem 2000; 275 : 10893–8. [Google Scholar]
  24. Shimohata T, Nakajima T, Yamada M, et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet 2000; 26 : 29–36. [Google Scholar]
  25. Skinner PJ, Koshy BT, Cummings CJ, et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 1997; 389 : 971–4. [Google Scholar]
  26. Kaytor MD, Duvick LA, Skinner PJ, Koob MD, Ranum LP, Orr HT. Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7. Hum Mol Genet 1999; 8 : 1657–64. [Google Scholar]
  27. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. Polyglutamine expansion downregulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 2000; 3 : 157–63. [Google Scholar]
  28. Brouillet E, Conde F, Beal MF, Hantraye P. Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 1999; 59 : 427–68. [Google Scholar]
  29. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 1997; 41 : 160–5. [Google Scholar]
  30. Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci USA 2000; 97 : 8093–7. [Google Scholar]
  31. Ona VO, Li M, Vonsattel JP, et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 1999; 399 : 263–7. [Google Scholar]
  32. Wellington CL, Hayden MR. Caspases and neurodegeneration : on the cutting edge of new therapeutic approaches. Clin Genet 2000; 57 : 1–10. [Google Scholar]
  33. Kobayashi Y, Kume A, Li M, et al. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 2000; 275 : 8772–8. [Google Scholar]
  34. Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 1998; 21 : 516–20. [Google Scholar]
  35. Ciechanover A, Orian A, Schwartz AL. The ubiquitin-mediated proteolytic pathway : mode of action and clinical implications. J Cell Biochem 2000; 34 (suppl) : 40–51. [Google Scholar]
  36. Cummings CJ, Reinstein E, Sun Y, et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 1999; 24 : 879–92. [Google Scholar]
  37. Kalchman MA, Graham RK, Xia G, et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin- conjugating enzyme. J Biol Chem 1996; 271 : 19385–94. [Google Scholar]
  38. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001; 292 : 1552–5. [Google Scholar]
  39. Kennedy L, Shelbourne PF. Dramatic mutation instability in HD mouse striatum : does polyglutamine load contribute to cellspecific vulnerability in Huntington’s disease ? Hum Mol Genet 2000; 9 : 2539–44. [Google Scholar]
  40. Lebre AS, Jamot L, Takahashi J, et al. Ataxin-7 interacts with a Cbl-associated protein that it recruits into neuronal intranuclear inclusions. Hum Mol Genet 2001; 10 : 1201–13. [Google Scholar]
  41. Freeman TB, Cicchetti F, Hauser RA, et al. Transplanted fetal striatum in Huntington’s disease : phenotypic development and lack of pathology. Proc Natl Acad Sci USA 2000; 97 : 13877–82. [Google Scholar]
  42. Bachoud-Levi AC, Remy P, Nguyen JP, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000; 356 : 1975–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.