Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 1, Janvier 2017
Matériaux pour la médecine de demain
|
|
---|---|---|
Page(s) | 46 - 51 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173301008 | |
Publié en ligne | 25 janvier 2017 |
- Pietrzyk-Nivau A, Poirault-Chassac S, Gandrille S, et al. Three-dimensional environment sustains hematopoietic stem cell differentiation into platelet-producing megakaryocytes. PLoS One 2015 ; 10 : e0136652. [CrossRef] [PubMed] [Google Scholar]
- L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006 ; 12 : 361–365. [CrossRef] [PubMed] [Google Scholar]
- L’Heureux N, Letourneur D. Clinical translation of tissue-engineered constructs for severe leg injuries. Ann Transl Med 2015 ; 3 : 134. [Google Scholar]
- Ram-Liebig G, Bednarz J, Stuerzebecher B, et al. Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Adv Drug Del Rev 2015 ; 82–83C : 181–191. [CrossRef] [Google Scholar]
- Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006 ; 367 : 1241–1246. [CrossRef] [PubMed] [Google Scholar]
- McAllister TN, Maruszewski M, Garrido SA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009 ; 373 : 1440–1446. [CrossRef] [PubMed] [Google Scholar]
- Sicari BM, Rubin JP, Dearth CL, et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 2014 ; 6 : 234ra258. [Google Scholar]
- Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater 2009 ; 5 : 1–13. [PubMed] [Google Scholar]
- Teodori L, Costa A, Marzio R, et al. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol 2014 ; 5 : 218. [CrossRef] [PubMed] [Google Scholar]
- Chevalier F, Arnaud D, Henault E, et al. A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: towards a matrix-based therapy? Eur Cell Mater 2015 ; 30 : 51–68. [CrossRef] [PubMed] [Google Scholar]
- Corona BT, Ward CL, Baker HB, et al. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 2014 ; 20 : 705–715. [PubMed] [Google Scholar]
- Tsuchiya T, Sivarapatna A, Rocco K, et al. Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration. Organogenesis 2014 ; 10 : 196–207. [Google Scholar]
- Martinod E, Radu DM, Chouahnia K, et al. Human transplantation of a biologic airway substitute in conservative lung cancer surgery. Ann Thorac Surg 2011 ; 91 : 837–842. [Google Scholar]
- Faulk DM, Londono R, Wolf MT, et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 2014 ; 35 : 8585–8595. [CrossRef] [PubMed] [Google Scholar]
- Abed A, Deval B, Assoul N, et al. A biocompatible polysaccharide hydrogel-embedded polypropylene mesh for enhanced tissue integration in rats. Tissue Eng Part A 2008 ; 14 : 519–527. [CrossRef] [PubMed] [Google Scholar]
- Kannan RY, Salacinski HJ, Butler PE, et al. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B 2005 ; 74 : 570–581. [CrossRef] [Google Scholar]
- Li S, Henry JJ. Nonthrombogenic approaches to cardiovascular bioengineering. Annu Rev Biomed Eng 2011 ; 13 : 451–475. [CrossRef] [PubMed] [Google Scholar]
- Thebaud NB, Bareille R, Remy M, et al. Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study. J Tissue Eng Regen Med 2010 ; 4 : 473–484. [PubMed] [Google Scholar]
- L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 2007 ; 357 : 1451–1453. [Google Scholar]
- Wystrychowski W, Cierpka L, Zagalski K, et al. Case study: first implantation of a frozen, devitalized tissue-engineered vascular graft for urgent hemodialysis access. J Vasc Access 2011 ; 12 : 67–70. [CrossRef] [PubMed] [Google Scholar]
- Shin’oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005 ; 129 : 1330–1338. [CrossRef] [PubMed] [Google Scholar]
- Chaouat M, Le Visage C, Autissier A, et al. The evaluation of a small-diameter polysaccharide-based arterial graft in rats. Biomaterials 2006 ; 27 : 5546–5553. [CrossRef] [PubMed] [Google Scholar]
- Meddahi-Pelle A, Legrand A, Marcellan A, et al. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angewandte Chemie 2014 ; 53 : 6369–6373. [CrossRef] [PubMed] [Google Scholar]
- Rami L, Malaise S, Delmond S, et al. Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering. J Biomed Mater Res A 2014 ; 102 : 3666–3676. [CrossRef] [PubMed] [Google Scholar]
- Malaise S, Rami L, Montembault A, et al. Bioresorption mechanisms of chitosan physical hydrogels: a scanning electron microscopy study. Mater Sci Eng C Mater Biol Appl 2014 ; 42 : 374–384. [CrossRef] [PubMed] [Google Scholar]
- Lavergne M, Derkaoui M, Delmau C, et al. Porous polysaccharide-based scaffolds for human endothelial progenitor cells. Macromol Biosci 2012 ; 12 : 901–910. [CrossRef] [PubMed] [Google Scholar]
- Le Visage C, Gournay O, Benguirat N, et al. Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Eng Part A 2012 ; 18 : 35–44. [CrossRef] [PubMed] [Google Scholar]
- Fayol D, Le Visage C, Ino J, et al. Design of Biomimetic vascular grafts with magnetic endothelial patterning. Cell Transplantation 2013 ; 22 : 2105–2118. [CrossRef] [PubMed] [Google Scholar]
- Chaouat M, Le Visage C, Baille WE, et al. A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Adv Funct Mater 2008 ; 18 : 2855–2861. [Google Scholar]
- Ino JM, Chevallier P, Letourneur D, et al. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter 2013 ; 3. [Google Scholar]
- Ino JM, Sju E, Ollivier V, et al. Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films. J Biomed Mater Res Part B 2013 ; 101 : 1549–1559. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.