Free Access
Issue
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 46 - 51
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301008
Published online 25 January 2017
  1. Pietrzyk-Nivau A, Poirault-Chassac S, Gandrille S, et al. Three-dimensional environment sustains hematopoietic stem cell differentiation into platelet-producing megakaryocytes. PLoS One 2015 ; 10 : e0136652. [CrossRef] [PubMed] [Google Scholar]
  2. L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006 ; 12 : 361–365. [CrossRef] [PubMed] [Google Scholar]
  3. L’Heureux N, Letourneur D. Clinical translation of tissue-engineered constructs for severe leg injuries. Ann Transl Med 2015 ; 3 : 134. [Google Scholar]
  4. Ram-Liebig G, Bednarz J, Stuerzebecher B, et al. Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Adv Drug Del Rev 2015 ; 82–83C : 181–191. [CrossRef] [Google Scholar]
  5. Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006 ; 367 : 1241–1246. [CrossRef] [PubMed] [Google Scholar]
  6. McAllister TN, Maruszewski M, Garrido SA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009 ; 373 : 1440–1446. [CrossRef] [PubMed] [Google Scholar]
  7. Sicari BM, Rubin JP, Dearth CL, et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 2014 ; 6 : 234ra258. [Google Scholar]
  8. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater 2009 ; 5 : 1–13. [PubMed] [Google Scholar]
  9. Teodori L, Costa A, Marzio R, et al. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol 2014 ; 5 : 218. [CrossRef] [PubMed] [Google Scholar]
  10. Chevalier F, Arnaud D, Henault E, et al. A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: towards a matrix-based therapy? Eur Cell Mater 2015 ; 30 : 51–68. [CrossRef] [PubMed] [Google Scholar]
  11. Corona BT, Ward CL, Baker HB, et al. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 2014 ; 20 : 705–715. [PubMed] [Google Scholar]
  12. Tsuchiya T, Sivarapatna A, Rocco K, et al. Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration. Organogenesis 2014 ; 10 : 196–207. [Google Scholar]
  13. Martinod E, Radu DM, Chouahnia K, et al. Human transplantation of a biologic airway substitute in conservative lung cancer surgery. Ann Thorac Surg 2011 ; 91 : 837–842. [Google Scholar]
  14. Faulk DM, Londono R, Wolf MT, et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 2014 ; 35 : 8585–8595. [CrossRef] [PubMed] [Google Scholar]
  15. Abed A, Deval B, Assoul N, et al. A biocompatible polysaccharide hydrogel-embedded polypropylene mesh for enhanced tissue integration in rats. Tissue Eng Part A 2008 ; 14 : 519–527. [CrossRef] [PubMed] [Google Scholar]
  16. Kannan RY, Salacinski HJ, Butler PE, et al. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B 2005 ; 74 : 570–581. [CrossRef] [Google Scholar]
  17. Li S, Henry JJ. Nonthrombogenic approaches to cardiovascular bioengineering. Annu Rev Biomed Eng 2011 ; 13 : 451–475. [CrossRef] [PubMed] [Google Scholar]
  18. Thebaud NB, Bareille R, Remy M, et al. Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study. J Tissue Eng Regen Med 2010 ; 4 : 473–484. [PubMed] [Google Scholar]
  19. L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 2007 ; 357 : 1451–1453. [Google Scholar]
  20. Wystrychowski W, Cierpka L, Zagalski K, et al. Case study: first implantation of a frozen, devitalized tissue-engineered vascular graft for urgent hemodialysis access. J Vasc Access 2011 ; 12 : 67–70. [CrossRef] [PubMed] [Google Scholar]
  21. Shin’oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005 ; 129 : 1330–1338. [CrossRef] [PubMed] [Google Scholar]
  22. Chaouat M, Le Visage C, Autissier A, et al. The evaluation of a small-diameter polysaccharide-based arterial graft in rats. Biomaterials 2006 ; 27 : 5546–5553. [CrossRef] [PubMed] [Google Scholar]
  23. Meddahi-Pelle A, Legrand A, Marcellan A, et al. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angewandte Chemie 2014 ; 53 : 6369–6373. [CrossRef] [PubMed] [Google Scholar]
  24. Rami L, Malaise S, Delmond S, et al. Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering. J Biomed Mater Res A 2014 ; 102 : 3666–3676. [CrossRef] [PubMed] [Google Scholar]
  25. Malaise S, Rami L, Montembault A, et al. Bioresorption mechanisms of chitosan physical hydrogels: a scanning electron microscopy study. Mater Sci Eng C Mater Biol Appl 2014 ; 42 : 374–384. [CrossRef] [PubMed] [Google Scholar]
  26. Lavergne M, Derkaoui M, Delmau C, et al. Porous polysaccharide-based scaffolds for human endothelial progenitor cells. Macromol Biosci 2012 ; 12 : 901–910. [CrossRef] [PubMed] [Google Scholar]
  27. Le Visage C, Gournay O, Benguirat N, et al. Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Eng Part A 2012 ; 18 : 35–44. [CrossRef] [PubMed] [Google Scholar]
  28. Fayol D, Le Visage C, Ino J, et al. Design of Biomimetic vascular grafts with magnetic endothelial patterning. Cell Transplantation 2013 ; 22 : 2105–2118. [CrossRef] [PubMed] [Google Scholar]
  29. Chaouat M, Le Visage C, Baille WE, et al. A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Adv Funct Mater 2008 ; 18 : 2855–2861. [Google Scholar]
  30. Ino JM, Chevallier P, Letourneur D, et al. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter 2013 ; 3. [Google Scholar]
  31. Ino JM, Sju E, Ollivier V, et al. Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films. J Biomed Mater Res Part B 2013 ; 101 : 1549–1559. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.