Free Access
Issue
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 52 - 59
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301009
Published online 25 January 2017
  1. Finch J. The ancient origins of prosthetic medicine. Lancet 2011 ; 377 : 548–549. [CrossRef] [PubMed] [Google Scholar]
  2. Kuehn BM Clinicians embrace 3D printers to solve unique clinical challenges. JAMA 2016 ; 315 : 333–335. [CrossRef] [PubMed] [Google Scholar]
  3. Zopf DA, Hollister SJ, Nelson ME, et al. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 2013 ; 368 : 2043–2045. [Google Scholar]
  4. Malik HH, Darwood AR, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res 2015 ; 199 : 512–522. [CrossRef] [PubMed] [Google Scholar]
  5. VanKoevering KK, Morrison RJ, Prabhu SP, et al. Antenatal three-dimensional printing of aberrant facial anatomy. Pediatrics 2015 ; 136 : e1382–e1385. [CrossRef] [PubMed] [Google Scholar]
  6. Billiet T, Vandenhaute M, Schelfhout J, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012 ; 33 : 6020–6041. [CrossRef] [PubMed] [Google Scholar]
  7. Leong KF, Cheah CM, Chua CK Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003 ; 24 : 2363–2378. [CrossRef] [PubMed] [Google Scholar]
  8. Bai S, Bo B, Bi Y, et al. CAD/CAM surface templates as an alternative to the intermediate wafer in orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010 ; 110 : e1–e7. [Google Scholar]
  9. Yeo A, Cheok C, Teoh SH, et al. Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model. Clin Oral Implants Res 2012 ; 23 : 1322–1332. [CrossRef] [PubMed] [Google Scholar]
  10. Ovsianikov A, Mironov V, Stampf J, Liska R Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Rev Med Devices 2012 ; 9 : 613–633. [CrossRef] [PubMed] [Google Scholar]
  11. Langer R, Vacanti JP Tissue engineering. Science 1993 ; 260 : 920–926. [Google Scholar]
  12. Fritz M, Belcher AM, Radmacher M, et al. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 1994 ; 371 : 49–51. [Google Scholar]
  13. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication 2016 ; 8 : 013001. [CrossRef] [PubMed] [Google Scholar]
  14. Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: report from the International Conference on bioprinting and biofabrication in Bordeaux (3B’09). Biofabrication 2010 ; 2 : 010201. [CrossRef] [PubMed] [Google Scholar]
  15. Gao B, Yang Q, Zhao X, et al. 4D bioprinting for biomedical applications. Trends Biotechnol 2016 ; 34 : 746–756. [CrossRef] [PubMed] [Google Scholar]
  16. Cytoscribing Klebe RJ a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 1988 ; 179 : 362–373. [CrossRef] [PubMed] [Google Scholar]
  17. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J 2006 ; 1 : 910–917. [Google Scholar]
  18. Ringeisen BR, Chrisey DB, Piqué A, et al. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 2002 ; 23 : 161–166. [CrossRef] [PubMed] [Google Scholar]
  19. Ali M, Pages E, Ducom A, et al. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 2014 ; 6 : 045001. [CrossRef] [PubMed] [Google Scholar]
  20. Devillard R, Pagès E, Correa MM, et al. Cell patterning by laser-assisted bioprinting. Methods Cell Biol 2014 ; 119 : 159–174. [Google Scholar]
  21. Catros S, Guillemot F, Nandakumar A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods 2012 ; 18 : 62–70. [Google Scholar]
  22. Guillotin B, Guillemot F Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 2011 ; 29 : 183–190. [CrossRef] [PubMed] [Google Scholar]
  23. Mézel C, Souquet A, Hallo L, Guillemot F Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication 2010 ; 2 : 014103. [CrossRef] [PubMed] [Google Scholar]
  24. Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2010 ; 2 : 014101. [CrossRef] [PubMed] [Google Scholar]
  25. Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010 ; 31 : 7250–7256. [CrossRef] [PubMed] [Google Scholar]
  26. Guillemot F, Souquet A, Catros S, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 2010 ; 6 : 2494–2500. [CrossRef] [PubMed] [Google Scholar]
  27. Chang R, Nam J, Sun W Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods 2008 ; 14 : 157–166. [Google Scholar]
  28. Xu F, Celli J, Rizvi I, et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 2011 ; 6 : 204–212. [Google Scholar]
  29. Wang C, Tang Z, Zhao Y, et al. Three-dimensional in vitro cancer models: a short review. Biofabrication 2014 ; 6 : 022001. [CrossRef] [PubMed] [Google Scholar]
  30. Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 2014 ; 6 : 035001. [CrossRef] [PubMed] [Google Scholar]
  31. Ozbolat IT Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 2015 ; 33 : 395–400. [CrossRef] [PubMed] [Google Scholar]
  32. Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016 ; 34 : 312–319. [CrossRef] [PubMed] [Google Scholar]
  33. Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 2012 ; 1 : 792–802. [CrossRef] [PubMed] [Google Scholar]
  34. Jordana F, Le Visage C, Weiss P Substituts osseux. Med Sci (Paris) 2017 ; 33 : 60–65. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.