Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 52 - 59
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301009
Publié en ligne 25 janvier 2017
  1. Finch J. The ancient origins of prosthetic medicine. Lancet 2011 ; 377 : 548–549. [CrossRef] [PubMed] [Google Scholar]
  2. Kuehn BM Clinicians embrace 3D printers to solve unique clinical challenges. JAMA 2016 ; 315 : 333–335. [CrossRef] [PubMed] [Google Scholar]
  3. Zopf DA, Hollister SJ, Nelson ME, et al. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 2013 ; 368 : 2043–2045. [Google Scholar]
  4. Malik HH, Darwood AR, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res 2015 ; 199 : 512–522. [CrossRef] [PubMed] [Google Scholar]
  5. VanKoevering KK, Morrison RJ, Prabhu SP, et al. Antenatal three-dimensional printing of aberrant facial anatomy. Pediatrics 2015 ; 136 : e1382–e1385. [CrossRef] [PubMed] [Google Scholar]
  6. Billiet T, Vandenhaute M, Schelfhout J, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012 ; 33 : 6020–6041. [CrossRef] [PubMed] [Google Scholar]
  7. Leong KF, Cheah CM, Chua CK Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003 ; 24 : 2363–2378. [CrossRef] [PubMed] [Google Scholar]
  8. Bai S, Bo B, Bi Y, et al. CAD/CAM surface templates as an alternative to the intermediate wafer in orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010 ; 110 : e1–e7. [Google Scholar]
  9. Yeo A, Cheok C, Teoh SH, et al. Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model. Clin Oral Implants Res 2012 ; 23 : 1322–1332. [CrossRef] [PubMed] [Google Scholar]
  10. Ovsianikov A, Mironov V, Stampf J, Liska R Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Rev Med Devices 2012 ; 9 : 613–633. [CrossRef] [PubMed] [Google Scholar]
  11. Langer R, Vacanti JP Tissue engineering. Science 1993 ; 260 : 920–926. [Google Scholar]
  12. Fritz M, Belcher AM, Radmacher M, et al. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 1994 ; 371 : 49–51. [Google Scholar]
  13. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication 2016 ; 8 : 013001. [CrossRef] [PubMed] [Google Scholar]
  14. Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: report from the International Conference on bioprinting and biofabrication in Bordeaux (3B’09). Biofabrication 2010 ; 2 : 010201. [CrossRef] [PubMed] [Google Scholar]
  15. Gao B, Yang Q, Zhao X, et al. 4D bioprinting for biomedical applications. Trends Biotechnol 2016 ; 34 : 746–756. [CrossRef] [PubMed] [Google Scholar]
  16. Cytoscribing Klebe RJ a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 1988 ; 179 : 362–373. [CrossRef] [PubMed] [Google Scholar]
  17. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J 2006 ; 1 : 910–917. [Google Scholar]
  18. Ringeisen BR, Chrisey DB, Piqué A, et al. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 2002 ; 23 : 161–166. [CrossRef] [PubMed] [Google Scholar]
  19. Ali M, Pages E, Ducom A, et al. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 2014 ; 6 : 045001. [CrossRef] [PubMed] [Google Scholar]
  20. Devillard R, Pagès E, Correa MM, et al. Cell patterning by laser-assisted bioprinting. Methods Cell Biol 2014 ; 119 : 159–174. [Google Scholar]
  21. Catros S, Guillemot F, Nandakumar A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods 2012 ; 18 : 62–70. [Google Scholar]
  22. Guillotin B, Guillemot F Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 2011 ; 29 : 183–190. [CrossRef] [PubMed] [Google Scholar]
  23. Mézel C, Souquet A, Hallo L, Guillemot F Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication 2010 ; 2 : 014103. [CrossRef] [PubMed] [Google Scholar]
  24. Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2010 ; 2 : 014101. [CrossRef] [PubMed] [Google Scholar]
  25. Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010 ; 31 : 7250–7256. [CrossRef] [PubMed] [Google Scholar]
  26. Guillemot F, Souquet A, Catros S, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 2010 ; 6 : 2494–2500. [CrossRef] [PubMed] [Google Scholar]
  27. Chang R, Nam J, Sun W Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods 2008 ; 14 : 157–166. [Google Scholar]
  28. Xu F, Celli J, Rizvi I, et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 2011 ; 6 : 204–212. [Google Scholar]
  29. Wang C, Tang Z, Zhao Y, et al. Three-dimensional in vitro cancer models: a short review. Biofabrication 2014 ; 6 : 022001. [CrossRef] [PubMed] [Google Scholar]
  30. Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 2014 ; 6 : 035001. [CrossRef] [PubMed] [Google Scholar]
  31. Ozbolat IT Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 2015 ; 33 : 395–400. [CrossRef] [PubMed] [Google Scholar]
  32. Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016 ; 34 : 312–319. [Google Scholar]
  33. Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 2012 ; 1 : 792–802. [CrossRef] [PubMed] [Google Scholar]
  34. Jordana F, Le Visage C, Weiss P Substituts osseux. Med Sci (Paris) 2017 ; 33 : 60–65. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.