Free Access
Issue
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 60 - 65
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301010
Published online 25 January 2017
  1. Sanan A, Haines SJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery 1997 ; 40 : 588–603. [PubMed] [Google Scholar]
  2. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005 ; 36 : S20–S27. [CrossRef] [PubMed] [Google Scholar]
  3. Mainard D. Les substituts de l’os, du cartilage et du ménisque en 2011 Paris : Romillat, 2011 : 202 p. [Google Scholar]
  4. Haute Autorité de Santé Substituts osseux Saint-Denis La Plaine : HAS, 2013 : 134. [Google Scholar]
  5. Daculsi G, Passuti N. Bioactive ceramics, fundamental properties and clinical application: the osteocoalescence process. Bioceramics 1989 ; 2 : 3–10. [Google Scholar]
  6. Daculsi G, Passuti N, Martin S, et al. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990 ; 24 : 379–396. [CrossRef] [PubMed] [Google Scholar]
  7. Daculsi G. L’os artificiel, une solution pour la reconstruction osseuse et une alternative aux allogreffes et aux autogreffes. J Biomat Dent 2001 ; 16 : 21–27. [Google Scholar]
  8. Piattelli A, Cordioli GP, Trisi P, et al. Light and confocal laser scanning microscopic evaluation of hydroxyapatite resorption patterns in medullary and cortical bone. Int J Oral Maxillofac Implants 1993 ; 8 : 309–315. [PubMed] [Google Scholar]
  9. Buser D. 20 years of guided bone regeneration in implant dentistry, 2nd ed. Berlin : Quintessence Publishing Co, 2009 : 272 p. [Google Scholar]
  10. Global Industry Analysts Inc., Global bone grafts industry. San Jose : Global Industry Analysts Inc, 2014 : 188 p. [Google Scholar]
  11. Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001 ; 83 : 98–103. [CrossRef] [PubMed] [Google Scholar]
  12. Peltier LF. The use of plaster of Paris to fill large defects in bone. Clin Orthop 1961 ; 21 : 1–31. [PubMed] [Google Scholar]
  13. McAuliffe J. Bone graft substitutes. J Hand Ther 2003 ; 16 : 180–187. [CrossRef] [PubMed] [Google Scholar]
  14. Tomford WW. Bone allografts: past, present and future. Cell Tissue Bank 2000 ; 1 : 105–109. [CrossRef] [PubMed] [Google Scholar]
  15. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002 ; 84 : 454–464. [CrossRef] [PubMed] [Google Scholar]
  16. Reddi AH, Wientroub S, Muthukumaran N. Biologic principles of bone induction. Orthop Clin North Am 1987 ; 18 : 207–212. [PubMed] [Google Scholar]
  17. Aspenberg P, Johnsson E, Thorngren KG. Dose-dependent reduction of bone inductive properties by ethylene oxide. J Bone Joint Surg Br 1990 ; 72 : 1036–1037. [PubMed] [Google Scholar]
  18. Munting E, Wilmart JF, Wijne A, et al. Effect of sterilization on osteoinduction. Comparison of five methods in demineralized rat bone. Acta Orthop Scand 1988 ; 59 : 34–38. [CrossRef] [PubMed] [Google Scholar]
  19. Thorwarth M, Wehrhan F, Srour S, et al. Evaluation of substitutes for bone: comparison of microradiographic and histological assessments. Br J Oral Maxillofac Surg 2007 ; 45 : 41–47. [CrossRef] [PubMed] [Google Scholar]
  20. Ewers R. Maxilla sinus grafting with marine algae derived bone forming material: a clinical report of long-term results. J Oral Maxillofac Surg 2005 ; 63 : 1712–1723. [CrossRef] [PubMed] [Google Scholar]
  21. Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004 ; 2 : 65–73. [Google Scholar]
  22. Buser D, Hoffmann B, Bernard JP, et al. Evaluation of filling materials in membrane–protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 1998 ; 9 : 137–150. [CrossRef] [PubMed] [Google Scholar]
  23. Jensen SS, Aaboe M, Pinholt EM, et al. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 1996 ; 11 : 55–66. [PubMed] [Google Scholar]
  24. Demers C, Hamdy CR, Corsi K, et al. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 2002 ; 12 : 15–35. [PubMed] [Google Scholar]
  25. Schwartz Z, Weesner T, van Dijk S, et al. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontol 2000 ; 71 : 1258–1269. [CrossRef] [PubMed] [Google Scholar]
  26. Wenz B, Oesch B, Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials 2001 ; 22 : 1599–1606. [CrossRef] [PubMed] [Google Scholar]
  27. Ong JL, Hoppe CA, Cardenas HL, et al. Osteoblast precursor cell activity on HA surfaces of different treatments. J Biomed Mater Res 1998 ; 39 : 176–183. [CrossRef] [PubMed] [Google Scholar]
  28. Taylor JC, Cuff SE, Leger JPL, et al. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. Int J Oral Maxillofac Implants 2002 ; 17 : 321–330. [PubMed] [Google Scholar]
  29. Piattelli M, Favero GA, Scarano A, et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999 ; 14 : 835–840. [PubMed] [Google Scholar]
  30. Allison D, Lindberg A, Samimi B, et al. A comparison of mineral bone graft substitutes for bone defects. US Oncol Hematol 2011 ; 7 : 38–49. [Google Scholar]
  31. Jordana F, Dupuis V, Colat-Parros J. Plâtres dentaires. EMC (Elsevier Masson SAS, Paris), Médecine buccale 2014 ; 28–225-B10, 14 p. [Google Scholar]
  32. Hench LL. The story of Bioglass. J Mater Sci Mater Med 2006 ; 17 : 967–978. [CrossRef] [PubMed] [Google Scholar]
  33. Vitale-Brovarone C, Verne E, Robiglio L, et al. Biocompatible glass-ceramic materials for bone substitution. J Mater Sci Mater Med 2008 ; 19 : 471–478. [CrossRef] [PubMed] [Google Scholar]
  34. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987 ; 18 : 323–334. [PubMed] [Google Scholar]
  35. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 1981 ; 157 : 259–278. [Google Scholar]
  36. Hollinger JO, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 1996 ; 324 : 55–65. [CrossRef] [Google Scholar]
  37. Constantz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995 ; 267 : 1796–1799. [CrossRef] [PubMed] [Google Scholar]
  38. Khairoun I, Boltong MG, Driessens FC, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med 1998 ; 9 : 425–428. [CrossRef] [PubMed] [Google Scholar]
  39. Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Preclinical evaluation of injectable bone substitute materials. J Tissue Eng Regen Med 2015 ; 9 : 191–209. [CrossRef] [PubMed] [Google Scholar]
  40. Weiss P, Obadia L, Magne D, et al. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials 2003 ; 24 : 4591–4601. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.