Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 60 - 65
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301010
Publié en ligne 25 janvier 2017
  1. Sanan A, Haines SJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery 1997 ; 40 : 588–603. [PubMed] [Google Scholar]
  2. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005 ; 36 : S20–S27. [CrossRef] [PubMed] [Google Scholar]
  3. Mainard D. Les substituts de l’os, du cartilage et du ménisque en 2011 Paris : Romillat, 2011 : 202 p. [Google Scholar]
  4. Haute Autorité de Santé Substituts osseux Saint-Denis La Plaine : HAS, 2013 : 134. [Google Scholar]
  5. Daculsi G, Passuti N. Bioactive ceramics, fundamental properties and clinical application: the osteocoalescence process. Bioceramics 1989 ; 2 : 3–10. [Google Scholar]
  6. Daculsi G, Passuti N, Martin S, et al. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990 ; 24 : 379–396. [CrossRef] [PubMed] [Google Scholar]
  7. Daculsi G. L’os artificiel, une solution pour la reconstruction osseuse et une alternative aux allogreffes et aux autogreffes. J Biomat Dent 2001 ; 16 : 21–27. [Google Scholar]
  8. Piattelli A, Cordioli GP, Trisi P, et al. Light and confocal laser scanning microscopic evaluation of hydroxyapatite resorption patterns in medullary and cortical bone. Int J Oral Maxillofac Implants 1993 ; 8 : 309–315. [PubMed] [Google Scholar]
  9. Buser D. 20 years of guided bone regeneration in implant dentistry, 2nd ed. Berlin : Quintessence Publishing Co, 2009 : 272 p. [Google Scholar]
  10. Global Industry Analysts Inc., Global bone grafts industry. San Jose : Global Industry Analysts Inc, 2014 : 188 p. [Google Scholar]
  11. Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001 ; 83 : 98–103. [CrossRef] [PubMed] [Google Scholar]
  12. Peltier LF. The use of plaster of Paris to fill large defects in bone. Clin Orthop 1961 ; 21 : 1–31. [PubMed] [Google Scholar]
  13. McAuliffe J. Bone graft substitutes. J Hand Ther 2003 ; 16 : 180–187. [CrossRef] [PubMed] [Google Scholar]
  14. Tomford WW. Bone allografts: past, present and future. Cell Tissue Bank 2000 ; 1 : 105–109. [CrossRef] [PubMed] [Google Scholar]
  15. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002 ; 84 : 454–464. [CrossRef] [PubMed] [Google Scholar]
  16. Reddi AH, Wientroub S, Muthukumaran N. Biologic principles of bone induction. Orthop Clin North Am 1987 ; 18 : 207–212. [PubMed] [Google Scholar]
  17. Aspenberg P, Johnsson E, Thorngren KG. Dose-dependent reduction of bone inductive properties by ethylene oxide. J Bone Joint Surg Br 1990 ; 72 : 1036–1037. [PubMed] [Google Scholar]
  18. Munting E, Wilmart JF, Wijne A, et al. Effect of sterilization on osteoinduction. Comparison of five methods in demineralized rat bone. Acta Orthop Scand 1988 ; 59 : 34–38. [CrossRef] [PubMed] [Google Scholar]
  19. Thorwarth M, Wehrhan F, Srour S, et al. Evaluation of substitutes for bone: comparison of microradiographic and histological assessments. Br J Oral Maxillofac Surg 2007 ; 45 : 41–47. [CrossRef] [PubMed] [Google Scholar]
  20. Ewers R. Maxilla sinus grafting with marine algae derived bone forming material: a clinical report of long-term results. J Oral Maxillofac Surg 2005 ; 63 : 1712–1723. [CrossRef] [PubMed] [Google Scholar]
  21. Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004 ; 2 : 65–73. [Google Scholar]
  22. Buser D, Hoffmann B, Bernard JP, et al. Evaluation of filling materials in membrane–protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 1998 ; 9 : 137–150. [CrossRef] [PubMed] [Google Scholar]
  23. Jensen SS, Aaboe M, Pinholt EM, et al. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 1996 ; 11 : 55–66. [PubMed] [Google Scholar]
  24. Demers C, Hamdy CR, Corsi K, et al. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 2002 ; 12 : 15–35. [PubMed] [Google Scholar]
  25. Schwartz Z, Weesner T, van Dijk S, et al. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontol 2000 ; 71 : 1258–1269. [CrossRef] [PubMed] [Google Scholar]
  26. Wenz B, Oesch B, Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials 2001 ; 22 : 1599–1606. [CrossRef] [PubMed] [Google Scholar]
  27. Ong JL, Hoppe CA, Cardenas HL, et al. Osteoblast precursor cell activity on HA surfaces of different treatments. J Biomed Mater Res 1998 ; 39 : 176–183. [CrossRef] [PubMed] [Google Scholar]
  28. Taylor JC, Cuff SE, Leger JPL, et al. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. Int J Oral Maxillofac Implants 2002 ; 17 : 321–330. [PubMed] [Google Scholar]
  29. Piattelli M, Favero GA, Scarano A, et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999 ; 14 : 835–840. [PubMed] [Google Scholar]
  30. Allison D, Lindberg A, Samimi B, et al. A comparison of mineral bone graft substitutes for bone defects. US Oncol Hematol 2011 ; 7 : 38–49. [Google Scholar]
  31. Jordana F, Dupuis V, Colat-Parros J. Plâtres dentaires. EMC (Elsevier Masson SAS, Paris), Médecine buccale 2014 ; 28–225-B10, 14 p. [Google Scholar]
  32. Hench LL. The story of Bioglass. J Mater Sci Mater Med 2006 ; 17 : 967–978. [CrossRef] [PubMed] [Google Scholar]
  33. Vitale-Brovarone C, Verne E, Robiglio L, et al. Biocompatible glass-ceramic materials for bone substitution. J Mater Sci Mater Med 2008 ; 19 : 471–478. [CrossRef] [PubMed] [Google Scholar]
  34. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987 ; 18 : 323–334. [PubMed] [Google Scholar]
  35. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 1981 ; 157 : 259–278. [Google Scholar]
  36. Hollinger JO, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 1996 ; 324 : 55–65. [CrossRef] [Google Scholar]
  37. Constantz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995 ; 267 : 1796–1799. [CrossRef] [PubMed] [Google Scholar]
  38. Khairoun I, Boltong MG, Driessens FC, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med 1998 ; 9 : 425–428. [CrossRef] [PubMed] [Google Scholar]
  39. Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Preclinical evaluation of injectable bone substitute materials. J Tissue Eng Regen Med 2015 ; 9 : 191–209. [CrossRef] [PubMed] [Google Scholar]
  40. Weiss P, Obadia L, Magne D, et al. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials 2003 ; 24 : 4591–4601. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.