Free Access
Issue |
Med Sci (Paris)
Volume 32, Number 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
|
|
---|---|---|
Page(s) | 944 - 951 | |
Section | Le microbiote : cet inconnu qui réside en nous | |
DOI | https://doi.org/10.1051/medsci/20163211009 | |
Published online | 23 December 2016 |
- Blottière HM, de Vos WM, Ehrlich SD, Doré J. Human intestinal metagenomics: state of the art and future. Curr Opin Microbiol 2013 ; 16 : 232–239. [CrossRef] [PubMed] [Google Scholar]
- Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science 2012 ; 336 : 1262–1267. [CrossRef] [PubMed] [Google Scholar]
- Van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013 ; 368 : 407–415. [CrossRef] [PubMed] [Google Scholar]
- Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977 ; 31 : 107–133. [CrossRef] [PubMed] [Google Scholar]
- Sender R, Fuchs S, Milo R. Are we really vastly out numbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016 ; 164 : 337–340. [CrossRef] [PubMed] [Google Scholar]
- Cultrone A, Tap J, Lapaque N, Doré J, Blottière HM. Metagenomics of the human intestinal tract: from who is there to what is done there. Curr Opin Food Sci 2015 ; 4 : 64–68. [CrossRef] [Google Scholar]
- Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999 ; 65 : 4799–4807. [PubMed] [Google Scholar]
- Audebert C, Hot D, Lemoine Y, Caboche S. Le séquençage haut-débit : vers un diagnostic basé sur la séquence complète du génome de l’agent infectieux. Med Sci (Paris) 2014 ; 30 : 1144–1151. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Clooney AG, Fouhy F, Sleator RD, et al. Comparing apples and oranges ? Next generation sequencing and its impact on microbiome analysis. PLoS One 2016 ; 11 : e0148028. [CrossRef] [PubMed] [Google Scholar]
- Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 ; 464 : 59–65. [CrossRef] [PubMed] [Google Scholar]
- Weinstock GM. Genomic approaches to studying the human microbiota. Nature 2012 ; 489 : 250–256. [CrossRef] [PubMed] [Google Scholar]
- Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014 ; 32 : 834–841. [CrossRef] [PubMed] [Google Scholar]
- Xiao L, Feng Q, Liang S, et al. A catalog of the mouse gut metagenome. Nat Biotechnol 2015 ; 33 : 1103–1108. [CrossRef] [PubMed] [Google Scholar]
- Nielsen HB, Almeida M, Juncker AS, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014 ; 32 : 822–828. [CrossRef] [PubMed] [Google Scholar]
- Almeida M, Pop M, Le Chatelier E, et al. Capturing the most wanted taxa through cross-sample correlations. ISME J 2016 ; 10 : 2459–2467. [CrossRef] [PubMed] [Google Scholar]
- Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011 ; 473 : 174–180. [CrossRef] [PubMed] [Google Scholar]
- Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients?. Nat Rev Microbiol 2012 ; 10 : 591–592. [CrossRef] [PubMed] [Google Scholar]
- Knights D, Ward TL, McKinlay CE, et al. Rethinking enterotypes. Cell Host Microbe 2014 ; 16 : 433–437. [CrossRef] [PubMed] [Google Scholar]
- Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature 2014 ; 509 : 357–360. [CrossRef] [PubMed] [Google Scholar]
- Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011 ; 334 : 105–108. [CrossRef] [PubMed] [Google Scholar]
- Doré J, Blottière HM. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol 2015 ; 32 : 195–199. [CrossRef] [PubMed] [Google Scholar]
- Vandeputte D, Falony G, Vieira-Silva S, et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016 ; 65 : 57–62. [CrossRef] [PubMed] [Google Scholar]
- Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013 ; 500 : 541–546. [CrossRef] [PubMed] [Google Scholar]
- Kong LC, Holmes BA, Cotillard A, et al. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One 2014 ; 9 : e109434. [Google Scholar]
- Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013 ; 500 : 585–588. [CrossRef] [PubMed] [Google Scholar]
- Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006 ; 55 : 205–211. [CrossRef] [PubMed] [Google Scholar]
- Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008 ; 105 : 16731–16736. [Google Scholar]
- Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006 ; 444 : 1022–1023. [CrossRef] [PubMed] [Google Scholar]
- Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 2008 ; 32 : 1720–1724. [Google Scholar]
- Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010 ; 18 : 190–195. [CrossRef] [PubMed] [Google Scholar]
- Qin N, Yang Li A, et al. Human gut microbiome alterations in liver cirrhosis. Nature 2014 ; 513 : 59–64. [CrossRef] [PubMed] [Google Scholar]
- Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015 ; 528 : 262–266. [CrossRef] [PubMed] [Google Scholar]
- Browne HP, Forster SC, Anonye BO, et al. Culturing of unculturable human microbiota reveals novel taxa and extensive sporulation. Nature 2016 ; 533 : 543–546. [CrossRef] [PubMed] [Google Scholar]
- Larraufie P, de Wouters T, Veronese G, Blottière HM, Doré J. Functional metagenomics to decipher food-microbe-host crosstalk. Proc Nutr Soc 2015 ; 74 : 1–4. [CrossRef] [PubMed] [Google Scholar]
- Lakhdari O, Cultrone A, Tap J, et al. Functional metagenomics: a high throughput screening method to study microbiota-driven cell signaling modulation in the human gut. PLoS One 2010 ; 5 : e13092. [CrossRef] [PubMed] [Google Scholar]
- De Wouters T, Ledue F, Nepelska M, et al. A robust and adaptable high throughput screening method to study host-microbiota interactions in the human intestine. PLoS One 2014 ; 9 : e105598. [CrossRef] [PubMed] [Google Scholar]
- Cohen LJ, Kang HS, Chu J, et al. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc Natl Acad Sci USA 2015 ; 112 : E4825–E4834. [CrossRef] [Google Scholar]
- Gaboriau-Routhiau V, Cerf-Bensussan N. Microbiote intestinal et développement du système immunitaire. Med Sci (Paris) 2016 ; 32 : 961–967. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lagier JC, Raoult D. Greffe de microbiote fécal et infections : mise au point, perspectives. Med Sci (Paris) 2016 ; 32 : 991–997. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- La Gilgenkrantz H. révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Burcelin R, Nicolas S, Blasco-Baque V. Microbiotes et maladies métaboliques : de nouveaux concepts pour de nouvelles stratégies thérapeutiques. Med Sci (Paris) 2016 ; 32 : 952–960. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lamas B, Richard ML, Sokol H. CARD9 et colite : un pont entre dysbiose et immunité. Med Sci (Paris) 2016 ; 32 : 933–936. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Rahmouni O, Dubuquoy L, Desreumaux P, Neut C. Microbiote intestinal et développement des maladies inflammatoires chroniques de l’intestin. Med Sci (Paris) 2016 ; 32 : 968–973. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014 ; 15 : 382–392. [CrossRef] [PubMed] [Google Scholar]
- Lepage P, Häsler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011 ; 141 : 227–236. [CrossRef] [PubMed] [Google Scholar]
- D’Argenio V, Casaburi G, Precone V, et al. Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens strain in duodenum of adult celiac patients. Am J Gastroenterol 2016 ; 111 : 879–890. [CrossRef] [Google Scholar]
- Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 2011 ; 141 : 1782–1791. [CrossRef] [PubMed] [Google Scholar]
- Rajilic-Stojanovic M, Biagi E, Heilig HG, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011 ; 141 : 1792–1801. [CrossRef] [PubMed] [Google Scholar]
- Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014 ; 10 : 766. [CrossRef] [PubMed] [Google Scholar]
- Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011 ; 6 : e16393. [Google Scholar]
- Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006 ; 444 : 1022–1023. [CrossRef] [PubMed] [Google Scholar]
- Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015 ; 17 : 260–273. [CrossRef] [PubMed] [Google Scholar]
- Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 2013 ; 11 : 46. [CrossRef] [PubMed] [Google Scholar]
- Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012 ; 488 : 178–184. [CrossRef] [PubMed] [Google Scholar]
- Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014 ; 124 : 1174–1182. [CrossRef] [PubMed] [Google Scholar]
- Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012 ; 129 : 434–440. [CrossRef] [PubMed] [Google Scholar]
- Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012 ; 3 : 1245. [CrossRef] [PubMed] [Google Scholar]
- Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010 ; 16 : 444–453. [CrossRef] [PubMed] [Google Scholar]
- Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 2014 ; 26 : 1155–1162. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.