Free Access
Issue
Med Sci (Paris)
Volume 32, Number 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
Page(s) 952 - 960
Section Le microbiote : cet inconnu qui réside en nous
DOI https://doi.org/10.1051/medsci/20163211010
Published online 23 December 2016
  1. Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnol 2014 ; 32 : 834–841. [CrossRef] [PubMed] [Google Scholar]
  2. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016 ; 164 : 337–340. [CrossRef] [PubMed] [Google Scholar]
  3. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012 ; 490 : 55–60. [CrossRef] [PubMed] [Google Scholar]
  4. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013 ; 500 : 541–546. [CrossRef] [PubMed] [Google Scholar]
  5. Bergstrom A, Skov TH, Bahl MI, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014 ; 80 : 2889–2900. [CrossRef] [PubMed] [Google Scholar]
  6. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 ; 464 : 59–65. [CrossRef] [PubMed] [Google Scholar]
  7. Emoto T, Yamashita T, Sasaki N, et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 2016 ; 23 : 908–921. [CrossRef] [PubMed] [Google Scholar]
  8. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013 ; 500 : 585–588. [CrossRef] [PubMed] [Google Scholar]
  9. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 2013 ; 62 : 531–539. [CrossRef] [PubMed] [Google Scholar]
  10. Rajca S, Grondin V, Louis E, et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis 2014 ; 20 : 978–986. [PubMed] [Google Scholar]
  11. Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016 ; 22 : 598–605. [CrossRef] [PubMed] [Google Scholar]
  12. Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014 ; 147 : 1055–1063e8. [CrossRef] [PubMed] [Google Scholar]
  13. Kim F, Pham M, Luttrell I, et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 2007 ; 100 : 1589–1596. [CrossRef] [PubMed] [Google Scholar]
  14. Song MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 2006 ; 346 : 739–745. [CrossRef] [PubMed] [Google Scholar]
  15. Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006 ; 116 : 3015–3025. [CrossRef] [PubMed] [Google Scholar]
  16. Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011 ; 3 : 559–572. [CrossRef] [PubMed] [Google Scholar]
  17. Hansson GC, Johansson ME. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 2010 ; 1 : 51–54. [CrossRef] [PubMed] [Google Scholar]
  18. Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 2001 ; 280 : G922–G929. [PubMed] [Google Scholar]
  19. Swidsinski A, Loening-Baucke V, Theissig F, et al. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 2007 ; 56 : 343–350. [CrossRef] [PubMed] [Google Scholar]
  20. Carneiro LA, Magalhaes JG, Tattoli I, et al. Nod-like proteins in inflammation and disease. J Pathol 2008 ; 214 : 136–148. [CrossRef] [PubMed] [Google Scholar]
  21. Kufer TA, Sansonetti PJ. Sensing of bacteria: NOD a lonely job. Curr Opin Microbiol 2007 ; 10 : 62–69. [CrossRef] [PubMed] [Google Scholar]
  22. Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 2011 ; 108 (suppl 1) : 4592–4598. [CrossRef] [Google Scholar]
  23. D’Aiuto F, Sabbah W, Netuveli G, et al. Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab 2008 ; 93 : 3989–3994. [CrossRef] [PubMed] [Google Scholar]
  24. Preshaw PM, Alba AL, Herrera D, et al. Periodontitis and diabetes: a two-way relationship. Diabetologia 2012 ; 55 : 21–31. [CrossRef] [PubMed] [Google Scholar]
  25. Blasco-Baque V, Serino M, Vergnes JN, et al. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS) receptor signaling: protective action of estrogens. PLoS One 2012 ; 7 : e48220. [CrossRef] [PubMed] [Google Scholar]
  26. Preshaw PM, Lauffart B, Zak E, et al. Progression and treatment of chronic adult periodontitis. J Periodontol 1999 ; 70 : 1209–1220. [CrossRef] [PubMed] [Google Scholar]
  27. Borrell LN, Papapanou PN. Analytical epidemiology of periodontitis. J Clin Periodontol 2005 ; 32 (suppl 6) : 132–158. [CrossRef] [PubMed] [Google Scholar]
  28. Lakhssassi N, Elhajoui N, Lodter JP, et al. Antimicrobial susceptibility variation of 50 anaerobic periopathogens in aggressive periodontitis: an interindividual variability study. Oral Microbiol Immunol 2005 ; 20 : 244–252. [CrossRef] [PubMed] [Google Scholar]
  29. Holm NR, Belstrom D, Ostergaard JA, et al. Identification of individuals with undiagnosed diabetes and pre-diabetes in a Danish cohort attending dental treatment. J Periodontol 2016 ; 87 : 395–402. [CrossRef] [PubMed] [Google Scholar]
  30. Field CA, Gidley MD, Preshaw PM, Jakubovics N. Investigation and quantification of key periodontal pathogens in patients with type 2 diabetes. J Periodontal Res 2012 ; 47 : 470–478. [CrossRef] [PubMed] [Google Scholar]
  31. Demmer RT, Jacobs DR, Jr, Singh R, et al. Periodontal bacteria and prediabetes prevalence in ORIGINS: the oral infections, glucose intolerance, and insulin resistance study. J Dent Res 2015 ; 94 : S201–S211. [CrossRef] [Google Scholar]
  32. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 2009 ; 106 : 2365–2370. [CrossRef] [Google Scholar]
  33. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and Vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 2015 ; 22 : 228–238. [CrossRef] [PubMed] [Google Scholar]
  34. Bueter M, Abegg K, Seyfried F, et al. Roux-en-Y gastric bypass operation in rats. J Vis Exp 2012 ; 64 : e3940. [Google Scholar]
  35. Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 2008 ; 8 : 201–211. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. Parker HE, Wallis K, le Roux CW, et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol 2012 ; 165 : 414–423. [CrossRef] [PubMed] [Google Scholar]
  37. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 2013 ; 13 : 935–940. [CrossRef] [PubMed] [Google Scholar]
  38. Davis LM, Martinez I, Walter J, et al. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 2011 ; 6 : e25200. [CrossRef] [PubMed] [Google Scholar]
  39. Baer DJ, Stote KS, Henderson T, et al. The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. J Nutr 2014 ; 144 : 1023–1029. [CrossRef] [PubMed] [Google Scholar]
  40. Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: How prebiotic can work?. Br J Nutr 2013 ; 109 (suppl 2) : S81–S85. [CrossRef] [PubMed] [Google Scholar]
  41. Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015 ; 528 : 262–266. [CrossRef] [PubMed] [Google Scholar]
  42. Cabreiro F, Au C, Leung KY, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013 ; 153 : 228–239. [CrossRef] [PubMed] [Google Scholar]
  43. Yassour M, Lim MY, Yun HS, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med 2016 ; 8 : 17. [CrossRef] [PubMed] [Google Scholar]
  44. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012 ; 143 : 913–916e7. [CrossRef] [PubMed] [Google Scholar]
  45. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007 ; 56 : 1761–1772. [CrossRef] [PubMed] [Google Scholar]
  46. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008 ; 57 : 1470–1481. [CrossRef] [PubMed] [Google Scholar]
  47. Verges B, Duvillard L, Lagrost L, et al. Changes in lipoprotein kinetics associated with type 2 diabetes affect the distribution of lipopolysaccharides among lipoproteins. J Clin Endocrinol Metab 2014 ; 99 : E1245–E1253. [CrossRef] [PubMed] [Google Scholar]
  48. Schertzer JD, Tamrakar AK, Magalhaes JG, et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 2011 ; 60 : 2206–2215. [CrossRef] [PubMed] [Google Scholar]
  49. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009 ; 58 : 1091–1103. [CrossRef] [PubMed] [Google Scholar]
  50. Hirose S, Ono HK, Omoe K, et al. Goblet cells are involved in translocation of staphylococcal enterotoxin A in the intestinal tissue of house musk shrew (Suncus murinus). J Appl Microbiol 2016 ; 120 : 781–789. [CrossRef] [PubMed] [Google Scholar]
  51. Koh IH, Liberatore AM, Menchaca-Diaz JL, et al. Bacterial translocation, microcirculation injury and sepsis. Endocr Metab Immune Dis Drug Targets 2006 ; 6 : 143–150. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  52. Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 2007 ; 50 : 1561–1569. [CrossRef] [PubMed] [Google Scholar]
  53. Gutierrez A, Holler E, Zapater P, et al. Antimicrobial peptide response to blood translocation of bacterial DNA in Crohn’s disease is affected by NOD2/CARD15 genotype. Inflamm Bowel Dis 2011 ; 17 : 1641–1650. [CrossRef] [PubMed] [Google Scholar]
  54. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013 ; 110 : 9066–9071. [CrossRef] [Google Scholar]
  55. Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol 1995 ; 3 : 149–154. [CrossRef] [PubMed] [Google Scholar]
  56. Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 2008 ; 87 : 1219–1223. [CrossRef] [PubMed] [Google Scholar]
  57. Burcelin R, Serino M, Chabo C, et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 2013 ; 15 (suppl 3) : 61–70. [CrossRef] [PubMed] [Google Scholar]
  58. Amar J, Lange C, Payros G, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS One 2013 ; 8 : e54461. [CrossRef] [PubMed] [Google Scholar]
  59. Amar J, Serino M, Lange C, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 2011 ; 54 : 3055–3061. [CrossRef] [PubMed] [Google Scholar]
  60. Luche E, Cousin B, Garidou L, et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab 2013 ; 2 : 281–291. [CrossRef] [PubMed] [Google Scholar]
  61. Garidou L, Pomie C, Klopp P, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORgammat and controls metabolic disease. Cell Metab 2015 ; 22 : 100–112. [CrossRef] [PubMed] [Google Scholar]
  62. Blasco-Baque V, Garidou L, Pomié C, et al. E. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin-resistance via an impaired adaptive immune response. Gut 2016 ; doi : 10.1136/gutjnl-2015-309897. [Google Scholar]
  63. Ishikawa M, Yoshida K, Okamura H, et al. Oral Porphyromonas gingivalis translocates to the liver and regulates hepatic glycogen synthesis through the Akt/GSK-3beta signaling pathway. Biochim Biophys Acta 2013 ; 1832 : 2035–2043. [CrossRef] [PubMed] [Google Scholar]
  64. Reichert S, Altermann W, Stein JM, et al. Individual composition of human leukocyte antigens and periodontopathogens in the background of periodontitis. J Periodontol 2013 ; 84 : 100–109. [CrossRef] [PubMed] [Google Scholar]
  65. Genser L, Poitou C, Brot-Laroche E, et al. L’altération de la perméabilité intestinale : chaînon manquant entre dysbiose et inflammation au cours de l’obésité ?. Med Sci (Paris) 2016 ; 32 : 461–469. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  66. Blottière HM, Doré J. Impact des nouveaux outils de métagénomique sur notre connaissance du microbiote intestinal et de son rôle en santé humaine : enjeux diagnostiques et thérapeutiques. Med Sci (Paris) 2016 ; 32 : 944–951. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  67. Thorens B. Incrétines, sécrétion d’insuline et diabète. Med Sci (Paris) 2003 ; 19 : 860–863. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  68. Lagier JC, Raoult D. Greffe de microbiote fécal et infections : mise au point, perspectives. Med Sci (Paris) 2016 ; 32 : 991–997. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  69. Weissenbach J, Sghir A. Microbiotes et métagénomique. Med Sci (Paris) 2016 ; 32 : 937–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.