Free Access
Issue
Med Sci (Paris)
Volume 32, Number 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
Page(s) 961 - 967
Section Le microbiote : cet inconnu qui réside en nous
DOI https://doi.org/10.1051/medsci/20163211011
Published online 23 December 2016
  1. Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007 ; 449 : 811–818. [CrossRef] [PubMed] [Google Scholar]
  2. McFall-Ngai M, Hadfield MG, Bosch TC, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 2013 ; 110 : 3229–3236. [CrossRef] [Google Scholar]
  3. Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012 ; 12 : 503–516. [CrossRef] [PubMed] [Google Scholar]
  4. Johansson ME, Sjovall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013 ; 10 : 352–361. [CrossRef] [PubMed] [Google Scholar]
  5. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 2007 ; 19 : 59–69. [CrossRef] [PubMed] [Google Scholar]
  6. Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev 2012 ; 245 : 147–163. [CrossRef] [PubMed] [Google Scholar]
  7. Stecher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectrum 2015 ; 3. doi: 10.1128/microbiolspec.MBP-0008-2014. [Google Scholar]
  8. Bain CC, Bravo-Blas A, Scott CL, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 2014 ; 15 : 929–937. [CrossRef] [PubMed] [Google Scholar]
  9. Li B, Alli R, Vogel P, Geiger TL. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol 2014 ; 7 : 869–878. [PubMed] [Google Scholar]
  10. Begue B, Verdier J, Rieux-Laucat F, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am J Gastroenterol 2011 ; 106 : 1544–1555. [CrossRef] [Google Scholar]
  11. Chu VT, Beller A, Rausch S, et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 2014 ; 40 : 582–593. [CrossRef] [PubMed] [Google Scholar]
  12. Zindl CL, Lai JF, Lee YK, et al. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci USA 2013 ; 110 : 12768–12773. [CrossRef] [Google Scholar]
  13. Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 2015 ; 21 : 698–708. [CrossRef] [PubMed] [Google Scholar]
  14. Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014 ; 343 : 1249288. [CrossRef] [PubMed] [Google Scholar]
  15. Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013 ; 498 : 113–117. [CrossRef] [PubMed] [Google Scholar]
  16. Sawa S, Lochner M, Satoh-Takayama N, et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 2011 ; 12 : 320–326. [CrossRef] [PubMed] [Google Scholar]
  17. Bekiaris V, Persson EK, Agace WW. Intestinal dendritic cells in the regulation of mucosal immunity. Immunol Rev 2014 ; 260 : 86–101. [CrossRef] [PubMed] [Google Scholar]
  18. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes?. Nat Rev Immunol 2010 ; 10 : 735–744. [CrossRef] [PubMed] [Google Scholar]
  19. Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008 ; 456 : 507–510. [CrossRef] [PubMed] [Google Scholar]
  20. Lecuyer E, Rakotobe S, Lengline-Garnier H, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014 ; 40 : 608–620. [CrossRef] [PubMed] [Google Scholar]
  21. Slack E, Balmer ML, Macpherson AJ. B cells as a critical node in the microbiota-host immune system network. Immunol Rev 2014 ; 260 : 50–66. [CrossRef] [PubMed] [Google Scholar]
  22. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009 ; 31 : 677–689. [CrossRef] [PubMed] [Google Scholar]
  23. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009 ; 139 : 485–498. [CrossRef] [PubMed] [Google Scholar]
  24. Cypowyj S, Picard C, Maródi L, et al. Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol 2012 ; 42 : 2246–2254. [CrossRef] [PubMed] [Google Scholar]
  25. Cao AT, Yao S, Gong B, et al. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol 2012 ; 189 : 4666–4673. [CrossRef] [PubMed] [Google Scholar]
  26. Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011 ; 34 : 794–806. [CrossRef] [PubMed] [Google Scholar]
  27. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013 ; 500 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  28. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013 ; 341 : 569–573. [CrossRef] [PubMed] [Google Scholar]
  29. Schnupf P, Gaboriau-Routhiau V, Gros M, et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 2015 ; 520 : 99–103. [CrossRef] [PubMed] [Google Scholar]
  30. Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with segmented filamentous bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 2013 ; 25 : 342–351. [CrossRef] [PubMed] [Google Scholar]
  31. Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015 ; 163 : 367–380. [CrossRef] [PubMed] [Google Scholar]
  32. Yang Y, Torchinsky MB, Gobert M, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014 ; 510 : 152–156. [CrossRef] [PubMed] [Google Scholar]
  33. Gauguet S, D’Ortona S, Ahnger-Pier K, et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect Immun 2015 ; 83 : 4003–4014. [CrossRef] [PubMed] [Google Scholar]
  34. Goto Y, Obata T, Kunisawa J, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014 ; 345 : 1254009. [CrossRef] [PubMed] [Google Scholar]
  35. Lathrop SK, Bloom SM, Rao SM, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011 ; 478 : 250–254. [CrossRef] [PubMed] [Google Scholar]
  36. Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 2006 ; 203 : 497–500. [CrossRef] [PubMed] [Google Scholar]
  37. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013 ; 504 : 451–455. [CrossRef] [PubMed] [Google Scholar]
  38. Burgess SL, Buonomo E, Carey M, et al. Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis. MBIO 2014 ; 5 : e01817. [CrossRef] [PubMed] [Google Scholar]
  39. Teng F, Klinger CN, Felix KM, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 2016 ; 44 : 875–888. [CrossRef] [PubMed] [Google Scholar]
  40. Stetdman A, Nigro G, Sansonetti P. Le dialogue microbiote-cellules souches: un élément clé pour la régénération intestinale. Med Sci (Paris) 2016 ; 32 : 983–990. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Cherrier M. Les cellules lymphoïdes innées. Med Sci (Paris) 2014 ; 30 : 280–288. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Vétizou M, Daillère R, Zitvogel L. Microbiote intestinal et réponses aux thérapies anti-tumorales. Med Sci (Paris) 2016 ; 32 : 974–982. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.