Accès gratuit
Numéro |
Med Sci (Paris)
Volume 32, Numéro 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
|
|
---|---|---|
Page(s) | 961 - 967 | |
Section | Le microbiote : cet inconnu qui réside en nous | |
DOI | https://doi.org/10.1051/medsci/20163211011 | |
Publié en ligne | 23 décembre 2016 |
- Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007 ; 449 : 811–818. [CrossRef] [PubMed] [Google Scholar]
- McFall-Ngai M, Hadfield MG, Bosch TC, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 2013 ; 110 : 3229–3236. [Google Scholar]
- Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012 ; 12 : 503–516. [CrossRef] [PubMed] [Google Scholar]
- Johansson ME, Sjovall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013 ; 10 : 352–361. [CrossRef] [PubMed] [Google Scholar]
- Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 2007 ; 19 : 59–69. [CrossRef] [PubMed] [Google Scholar]
- Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev 2012 ; 245 : 147–163. [CrossRef] [PubMed] [Google Scholar]
- Stecher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectrum 2015 ; 3. doi: 10.1128/microbiolspec.MBP-0008-2014. [Google Scholar]
- Bain CC, Bravo-Blas A, Scott CL, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 2014 ; 15 : 929–937. [CrossRef] [PubMed] [Google Scholar]
- Li B, Alli R, Vogel P, Geiger TL. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol 2014 ; 7 : 869–878. [PubMed] [Google Scholar]
- Begue B, Verdier J, Rieux-Laucat F, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am J Gastroenterol 2011 ; 106 : 1544–1555. [CrossRef] [Google Scholar]
- Chu VT, Beller A, Rausch S, et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 2014 ; 40 : 582–593. [CrossRef] [PubMed] [Google Scholar]
- Zindl CL, Lai JF, Lee YK, et al. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci USA 2013 ; 110 : 12768–12773. [CrossRef] [Google Scholar]
- Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 2015 ; 21 : 698–708. [CrossRef] [PubMed] [Google Scholar]
- Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014 ; 343 : 1249288. [CrossRef] [PubMed] [Google Scholar]
- Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013 ; 498 : 113–117. [CrossRef] [PubMed] [Google Scholar]
- Sawa S, Lochner M, Satoh-Takayama N, et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 2011 ; 12 : 320–326. [CrossRef] [PubMed] [Google Scholar]
- Bekiaris V, Persson EK, Agace WW. Intestinal dendritic cells in the regulation of mucosal immunity. Immunol Rev 2014 ; 260 : 86–101. [CrossRef] [PubMed] [Google Scholar]
- Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes?. Nat Rev Immunol 2010 ; 10 : 735–744. [CrossRef] [PubMed] [Google Scholar]
- Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008 ; 456 : 507–510. [CrossRef] [PubMed] [Google Scholar]
- Lecuyer E, Rakotobe S, Lengline-Garnier H, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014 ; 40 : 608–620. [CrossRef] [PubMed] [Google Scholar]
- Slack E, Balmer ML, Macpherson AJ. B cells as a critical node in the microbiota-host immune system network. Immunol Rev 2014 ; 260 : 50–66. [CrossRef] [PubMed] [Google Scholar]
- Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009 ; 31 : 677–689. [CrossRef] [PubMed] [Google Scholar]
- Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009 ; 139 : 485–498. [CrossRef] [PubMed] [Google Scholar]
- Cypowyj S, Picard C, Maródi L, et al. Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol 2012 ; 42 : 2246–2254. [CrossRef] [PubMed] [Google Scholar]
- Cao AT, Yao S, Gong B, et al. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol 2012 ; 189 : 4666–4673. [CrossRef] [PubMed] [Google Scholar]
- Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011 ; 34 : 794–806. [CrossRef] [PubMed] [Google Scholar]
- Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013 ; 500 : 232–236. [CrossRef] [PubMed] [Google Scholar]
- Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013 ; 341 : 569–573. [CrossRef] [PubMed] [Google Scholar]
- Schnupf P, Gaboriau-Routhiau V, Gros M, et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 2015 ; 520 : 99–103. [CrossRef] [PubMed] [Google Scholar]
- Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with segmented filamentous bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 2013 ; 25 : 342–351. [CrossRef] [PubMed] [Google Scholar]
- Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015 ; 163 : 367–380. [CrossRef] [PubMed] [Google Scholar]
- Yang Y, Torchinsky MB, Gobert M, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014 ; 510 : 152–156. [CrossRef] [PubMed] [Google Scholar]
- Gauguet S, D’Ortona S, Ahnger-Pier K, et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect Immun 2015 ; 83 : 4003–4014. [CrossRef] [PubMed] [Google Scholar]
- Goto Y, Obata T, Kunisawa J, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014 ; 345 : 1254009. [CrossRef] [PubMed] [Google Scholar]
- Lathrop SK, Bloom SM, Rao SM, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011 ; 478 : 250–254. [CrossRef] [PubMed] [Google Scholar]
- Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 2006 ; 203 : 497–500. [CrossRef] [PubMed] [Google Scholar]
- Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013 ; 504 : 451–455. [CrossRef] [PubMed] [Google Scholar]
- Burgess SL, Buonomo E, Carey M, et al. Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis. MBIO 2014 ; 5 : e01817. [CrossRef] [PubMed] [Google Scholar]
- Teng F, Klinger CN, Felix KM, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 2016 ; 44 : 875–888. [CrossRef] [PubMed] [Google Scholar]
- Stetdman A, Nigro G, Sansonetti P. Le dialogue microbiote-cellules souches: un élément clé pour la régénération intestinale. Med Sci (Paris) 2016 ; 32 : 983–990. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cherrier M. Les cellules lymphoïdes innées. Med Sci (Paris) 2014 ; 30 : 280–288. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Vétizou M, Daillère R, Zitvogel L. Microbiote intestinal et réponses aux thérapies anti-tumorales. Med Sci (Paris) 2016 ; 32 : 974–982. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.