Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 6-7, Juin–Juillet 2014
Page(s) 659 - 664
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143006016
Publié en ligne 11 juillet 2014
  1. Gilbert C, Schaack S, Feschotte C. Quand les éléments génétiques mobiles bondissent entre espèces animales. Med Sci (Paris) 2010 ; 26 : 1025–1027. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009 ; 10 : 691–703. [CrossRef] [PubMed] [Google Scholar]
  3. Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev 2012 ; 22 : 191–203. [CrossRef] [PubMed] [Google Scholar]
  4. Esnault C, Maestre J, Heidmann T. Human LINE retrotransposons generate processed pseudogenes. Nat Genet 2000 ; 24 : 363–367. [CrossRef] [PubMed] [Google Scholar]
  5. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 2003 ; 35 : 41–48. [CrossRef] [PubMed] [Google Scholar]
  6. Raiz J, Damert A, Chira S, et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 2012 ; 40 : 1666–1683. [CrossRef] [PubMed] [Google Scholar]
  7. Monot C, Kuciak M, Viollet S, et al. The specificity and flexibility of L1 reverse transcription priming at imperfect T-Tracts. PLoS Genet 2013 ; 5 : e1003499. [CrossRef] [Google Scholar]
  8. Zinger N, Willhoeft U, Brose HP, et al. Analysis of 5’ junctions of human LINE-1 and Alu retrotransposons suggeste an alternative model for 5’-end attachment requiring microhomology-mediated end-joining. Genome Res 2005 ; 15 : 780–789. [CrossRef] [PubMed] [Google Scholar]
  9. Suzuki J, Yamaguchi K, Kajikawa M, et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 2009 ; 5 : e1000461. [CrossRef] [PubMed] [Google Scholar]
  10. Coufal NG, Garcia-Perez JL, Peng GE, et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci USA 2011 ; 108 : 20382–20387. [CrossRef] [Google Scholar]
  11. Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 2010 ; 38 : 3909–3922. [CrossRef] [PubMed] [Google Scholar]
  12. Rodic´ N, Burns KH. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS Genet 2013 ; 9 : e1003402. [CrossRef] [PubMed] [Google Scholar]
  13. Lee E, Iskow R, Yang L, et al. Landscape of somatic retrotransposition in human cancers. Science 2012 ; 337 : 967–971. [CrossRef] [PubMed] [Google Scholar]
  14. Iskow RC, McCabe MT, Mills RE, et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010 ; 141 : 1253–1261. [CrossRef] [PubMed] [Google Scholar]
  15. Solyom S, Ewing AD, Rahrmann EP, et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 2012 ; 22 : 2328–2338. [CrossRef] [PubMed] [Google Scholar]
  16. Shukla R, Upton KR, Muñoz-Lopez M, et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013 ; 153 : 101–111. [CrossRef] [PubMed] [Google Scholar]
  17. Robert V, Bucheton A. Régulation de l’expression des séquences répétées et interférence par l’ARN. Med Sci (Paris) 2004 ; 20 : 767–772. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Fuks F. Les méthyltransférases de l’ADN : du remodelage de la chromatine au cancer. Med Sci (Paris) 2003 ; 19 : 477–480. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004 ; 431 : 96–99. [CrossRef] [PubMed] [Google Scholar]
  20. Liang G, Chan MF, Tomigahara Y, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 2002 ; 22 : 480–491. [CrossRef] [PubMed] [Google Scholar]
  21. Muotri AR, Marchetto MC, Coufal NG, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 2010 ; 468 : 443–446. [CrossRef] [PubMed] [Google Scholar]
  22. Carmell MA, Girard A, van de Kant HJ, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 2007 ; 12 : 503–514. [CrossRef] [PubMed] [Google Scholar]
  23. Garcia-Perez JL, Morell M, Scheys JO, et al. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 2010 ; 499 : 769–773. [CrossRef] [Google Scholar]
  24. Filipponi D, Muller J, Emelyanov A, Bulavin V. Wip1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation. Cancer Cell 2013 ; 24 : 528–541. [CrossRef] [PubMed] [Google Scholar]
  25. Yang N, Zhang L, Zhang Y, Kazazian HH. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 2003 ; 31 : 4929–4940. [CrossRef] [PubMed] [Google Scholar]
  26. Tchénio T, Casella JF, Heidmann T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res 2000 ; 28 : 411–415. [CrossRef] [PubMed] [Google Scholar]
  27. Leonova KI, Brodsky L, Lipchick B, et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNA. Proc Natl Acad Sci USA 2013 ; 110 : E89–E98. [CrossRef] [Google Scholar]
  28. Harris CR, Dewan A, Zupnick A, et al. p53 responsive elements in human retrotransposons. Oncogene 2009 ; 28 : 3857–3865. [CrossRef] [PubMed] [Google Scholar]
  29. Petrie K, Guidez F, Zhu J, et al. Retinoblastoma protein and the leukemia-associated PLZF transcription factor interact to repress target gene promoters. Oncogene 2008 ; 27 : 5260–5266. [CrossRef] [PubMed] [Google Scholar]
  30. Montoya-Durango DE, Liu Y, Teneng I, et al. Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 2009 ; 665 : 20–28. [CrossRef] [PubMed] [Google Scholar]
  31. Puszyk W, Down T, Grimwade D, et al. The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J 2013 ; 32 : 1941–1952. [CrossRef] [PubMed] [Google Scholar]
  32. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007 ; 8 : 272–285. [CrossRef] [PubMed] [Google Scholar]
  33. Azuara, V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006 ; 8 : 532–538. [CrossRef] [PubMed] [Google Scholar]
  34. Stadler MB, Murr R, Burger L, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011 ; 480 : 490–495. [PubMed] [Google Scholar]
  35. Faulkner GJ, Kimura Y, Daub CO, et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009 ; 41 : 563–571. [CrossRef] [PubMed] [Google Scholar]
  36. Kaer K, Speek M. Retroelements in human disease. Gene 2013 ; 518 : 231–241. [CrossRef] [PubMed] [Google Scholar]
  37. Gilgenkrantz H. « Le monde selon YAP ». Med Sci (Paris) 2013 ; 29 : 868–874. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Muller S, Pandey RR, Pillai RS. Les piARN forgent un système immunitaire pour le génome. Med Sci (Paris) 2013 ; 29 : 487–494. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.