Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 6-7, Juin–Juillet 2014
|
|
---|---|---|
Page(s) | 659 - 664 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20143006016 | |
Published online | 11 July 2014 |
- Gilbert C, Schaack S, Feschotte C. Quand les éléments génétiques mobiles bondissent entre espèces animales. Med Sci (Paris) 2010 ; 26 : 1025–1027. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009 ; 10 : 691–703. [CrossRef] [PubMed] [Google Scholar]
- Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev 2012 ; 22 : 191–203. [CrossRef] [PubMed] [Google Scholar]
- Esnault C, Maestre J, Heidmann T. Human LINE retrotransposons generate processed pseudogenes. Nat Genet 2000 ; 24 : 363–367. [CrossRef] [PubMed] [Google Scholar]
- Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 2003 ; 35 : 41–48. [CrossRef] [PubMed] [Google Scholar]
- Raiz J, Damert A, Chira S, et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 2012 ; 40 : 1666–1683. [CrossRef] [PubMed] [Google Scholar]
- Monot C, Kuciak M, Viollet S, et al. The specificity and flexibility of L1 reverse transcription priming at imperfect T-Tracts. PLoS Genet 2013 ; 5 : e1003499. [CrossRef] [Google Scholar]
- Zinger N, Willhoeft U, Brose HP, et al. Analysis of 5’ junctions of human LINE-1 and Alu retrotransposons suggeste an alternative model for 5’-end attachment requiring microhomology-mediated end-joining. Genome Res 2005 ; 15 : 780–789. [CrossRef] [PubMed] [Google Scholar]
- Suzuki J, Yamaguchi K, Kajikawa M, et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 2009 ; 5 : e1000461. [CrossRef] [PubMed] [Google Scholar]
- Coufal NG, Garcia-Perez JL, Peng GE, et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci USA 2011 ; 108 : 20382–20387. [CrossRef] [Google Scholar]
- Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 2010 ; 38 : 3909–3922. [CrossRef] [PubMed] [Google Scholar]
- Rodic´ N, Burns KH. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS Genet 2013 ; 9 : e1003402. [CrossRef] [PubMed] [Google Scholar]
- Lee E, Iskow R, Yang L, et al. Landscape of somatic retrotransposition in human cancers. Science 2012 ; 337 : 967–971. [CrossRef] [PubMed] [Google Scholar]
- Iskow RC, McCabe MT, Mills RE, et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010 ; 141 : 1253–1261. [CrossRef] [PubMed] [Google Scholar]
- Solyom S, Ewing AD, Rahrmann EP, et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 2012 ; 22 : 2328–2338. [CrossRef] [PubMed] [Google Scholar]
- Shukla R, Upton KR, Muñoz-Lopez M, et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013 ; 153 : 101–111. [CrossRef] [PubMed] [Google Scholar]
- Robert V, Bucheton A. Régulation de l’expression des séquences répétées et interférence par l’ARN. Med Sci (Paris) 2004 ; 20 : 767–772. [Google Scholar]
- Fuks F. Les méthyltransférases de l’ADN : du remodelage de la chromatine au cancer. Med Sci (Paris) 2003 ; 19 : 477–480. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004 ; 431 : 96–99. [CrossRef] [PubMed] [Google Scholar]
- Liang G, Chan MF, Tomigahara Y, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 2002 ; 22 : 480–491. [CrossRef] [PubMed] [Google Scholar]
- Muotri AR, Marchetto MC, Coufal NG, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 2010 ; 468 : 443–446. [CrossRef] [PubMed] [Google Scholar]
- Carmell MA, Girard A, van de Kant HJ, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 2007 ; 12 : 503–514. [CrossRef] [PubMed] [Google Scholar]
- Garcia-Perez JL, Morell M, Scheys JO, et al. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 2010 ; 499 : 769–773. [CrossRef] [Google Scholar]
- Filipponi D, Muller J, Emelyanov A, Bulavin V. Wip1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation. Cancer Cell 2013 ; 24 : 528–541. [CrossRef] [PubMed] [Google Scholar]
- Yang N, Zhang L, Zhang Y, Kazazian HH. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 2003 ; 31 : 4929–4940. [CrossRef] [PubMed] [Google Scholar]
- Tchénio T, Casella JF, Heidmann T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res 2000 ; 28 : 411–415. [CrossRef] [PubMed] [Google Scholar]
- Leonova KI, Brodsky L, Lipchick B, et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNA. Proc Natl Acad Sci USA 2013 ; 110 : E89–E98. [CrossRef] [Google Scholar]
- Harris CR, Dewan A, Zupnick A, et al. p53 responsive elements in human retrotransposons. Oncogene 2009 ; 28 : 3857–3865. [CrossRef] [PubMed] [Google Scholar]
- Petrie K, Guidez F, Zhu J, et al. Retinoblastoma protein and the leukemia-associated PLZF transcription factor interact to repress target gene promoters. Oncogene 2008 ; 27 : 5260–5266. [CrossRef] [PubMed] [Google Scholar]
- Montoya-Durango DE, Liu Y, Teneng I, et al. Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 2009 ; 665 : 20–28. [CrossRef] [PubMed] [Google Scholar]
- Puszyk W, Down T, Grimwade D, et al. The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J 2013 ; 32 : 1941–1952. [CrossRef] [PubMed] [Google Scholar]
- Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007 ; 8 : 272–285. [CrossRef] [PubMed] [Google Scholar]
- Azuara, V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006 ; 8 : 532–538. [CrossRef] [PubMed] [Google Scholar]
- Stadler MB, Murr R, Burger L, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011 ; 480 : 490–495. [PubMed] [Google Scholar]
- Faulkner GJ, Kimura Y, Daub CO, et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009 ; 41 : 563–571. [CrossRef] [PubMed] [Google Scholar]
- Kaer K, Speek M. Retroelements in human disease. Gene 2013 ; 518 : 231–241. [CrossRef] [PubMed] [Google Scholar]
- Gilgenkrantz H. « Le monde selon YAP ». Med Sci (Paris) 2013 ; 29 : 868–874. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Muller S, Pandey RR, Pillai RS. Les piARN forgent un système immunitaire pour le génome. Med Sci (Paris) 2013 ; 29 : 487–494. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.