Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 6-7, Juin–Juillet 2014
|
|
---|---|---|
Page(s) | 665 - 670 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20143006017 | |
Published online | 11 July 2014 |
- Norcross MA. A synaptic basis for T-lymphocyte activation. Ann Immunol 1984 ; 135D : 113–134. [Google Scholar]
- Monks CR, Freiberg BA, Kupfer H, etal. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998 ; 395 : 82–86. [CrossRef] [PubMed] [Google Scholar]
- Grakoui A, Bromley SK, Sumen C, etal. The immunological synapse: A molecular machine controlling T cell activation. Science 1999 ; 285 : 221–227. [CrossRef] [PubMed] [Google Scholar]
- Trautmann A, Revy P, Donnadieu E, etal. Synapses immunologiques et synapses neuronales. Med Sci (Paris) 2003 ; 19 : 429–436. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Dustin ML. T-cell activation through immunological synapses and kinapses. Immunol Rev 2008 ; 221 : 77–89. [CrossRef] [PubMed] [Google Scholar]
- Acuto O, Bartolo V Di, Michel F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol 2008 ; 8 : 699–712. [CrossRef] [PubMed] [Google Scholar]
- Martin-Cofreces NB, Baixauli F, Lopez MJ, etal. End-binding protein 1 controls signal propagation from the T cell receptor. EMBO J 2012 ; 31 : 4140–4152. [CrossRef] [PubMed] [Google Scholar]
- Lasserre R, Alcover A. Microtubule dynamics and signal transduction at the immunological synapse: new partners and new connections. EMBO J 2012 ; 31 : 4100–4102. [CrossRef] [PubMed] [Google Scholar]
- Martin-Cofreces NB, Robles-Valero J, Cabrero JR, etal. MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol 2008 ; 182 : 951–962. [CrossRef] [PubMed] [Google Scholar]
- Lasserre R, Charrin S, Cuche C, etal. Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse. EMBO J 2010 ; 29 : 2301–2314. [CrossRef] [PubMed] [Google Scholar]
- Gomez TS Kumar K, Medeiros RB, etal. Formins regulate the actin-related protein 2/3 complexindependent polarization of the centrosome to the immunological synapse. Immunity 2007 ; 26 : 177–190. [CrossRef] [PubMed] [Google Scholar]
- Andres-Delgado L, Anton OM, Bartolini F, etal. INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells. J Cell Biol 2012 ; 198 : 1025–1037. [CrossRef] [PubMed] [Google Scholar]
- Gorman JA, Babich A, Dick CJ, etal. The cytoskeletal adaptor protein IQGAP1 regulates TCRmediated signaling and filamentous actin dynamics. J Immunol 2012 ; 188 : 6135–6144. [CrossRef] [PubMed] [Google Scholar]
- Burkhardt JK, Carrizosa E, Shaffer MH. The actin cytoskeleton in T cell activation. Annu Rev Immunol 2008 ; 26 : 233–259. [CrossRef] [PubMed] [Google Scholar]
- Lasserre R, Alcover A. Cytoskeletal cross-talk in the control of T cell antigen receptor signaling. FEBS Lett 2010 ; 584 : 4845–4850. [CrossRef] [PubMed] [Google Scholar]
- Wulfing C, Davis MM. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 1998 ; 282 : 2266–2269. [CrossRef] [PubMed] [Google Scholar]
- Soares H R Lasserre, and A. Alcover, Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev 2013 ; 256 : 118–132. [CrossRef] [PubMed] [Google Scholar]
- Das V, Nal B, Dujeancourt A, etal. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 2004 ; 20 : 577–588. [CrossRef] [PubMed] [Google Scholar]
- Soares H, Henriques R, Sachse M, etal. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. J Exp Med 2013 ; 210 : 2415–2433. [CrossRef] [PubMed] [Google Scholar]
- Larghi P, Williamson DJ, Carpier J-M, etal. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCRactivation sites. Nat Immunol 2013 ; 14 : 723–731. [CrossRef] [PubMed] [Google Scholar]
- Ventimiglia LN, Alonso MA. The role of membrane rafts in Lck transport, regulation and signalling in T-cells. Biochem J 2013 ; 454 : 169–179. [CrossRef] [PubMed] [Google Scholar]
- Yokosuka T, Saito T. The immunological synapse, TCR microclusters, and T cell activation. Curr Top Microbiol Immunol 2010 ; 340 : 81–107. [CrossRef] [PubMed] [Google Scholar]
- Hammer JA 3rd, Burkhardt JK. Controversy and consensus regarding myosin II function at the immunological synapse. Curr Opin Immunol 2013 ; 25 : 300–306. [CrossRef] [PubMed] [Google Scholar]
- Hashimoto-Tane A, Yokosuka T, Sakata-Sogawa K, etal. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 2011 ; 34 : 919–931. [CrossRef] [PubMed] [Google Scholar]
- Alcover A, Alarcon B. Internalization and intracellular fate of TCR-CD3 complexes. Crit Rev Immunol 2000 ; 20 : 325–346. [CrossRef] [PubMed] [Google Scholar]
- Martinez-Martin N, Fernandez-Arenas E, Cemerski S, etal. T cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis. Immunity 2011 ; 35 : 208–222. [CrossRef] [PubMed] [Google Scholar]
- Balagopalan L Coussens NP, Sherman E, etal. The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb Perspect Biol 2010 ; 2 : a005512. [PubMed] [Google Scholar]
- Bartolo V Di, Montagne B, Salek M, etal. A novel pathway down-modulating T cell activation involves HPK-1-dependent recruitment of 14–3-3 proteins on SLP-76. J Exp Med 2007 ; 204 : 681–691. [CrossRef] [PubMed] [Google Scholar]
- Lasserre R, Cuche C, Blecher-Gonen R, etal. Release of serine/threoninephosphorylated adaptors from signaling microclusters down-regulates T cell activation. J Cell Biol 2011 ; 195 : 839–853. [CrossRef] [PubMed] [Google Scholar]
- Thoulouze MI, Sol-Foulon N, Blanchet F, etal. Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 2006 ; 24 : 547–261. [CrossRef] [PubMed] [Google Scholar]
- Abraham L, Bankhead P, Pan X, etal. HIV-1 Nef limits communication between linker of activated T cells and SLP-76 to reduce formation of SLP- 76-signaling microclusters following TCR stimulation. J Immunol 2012 ; 189 : 1898–1910. [CrossRef] [PubMed] [Google Scholar]
- Benichou S, Benmerah A. Proteines Nef du VIH et K3/K5 du virus associe au sarcoma de Kaposi : des ≪ parasites ≫ de la voie d’endocytose. Med Sci (Paris) 2003 ; 19 : 100–106. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Stolp B, Reichman-Fried M, Abraham L, etal. HIV-1 Nef interferes with host cell motility by deregulation of Cofilin. Cell Host Microbe 2009 ; 6 : 174–186. [CrossRef] [PubMed] [Google Scholar]
- Haller C Rauch S, Michel N, etal. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J Biol Chem 2006 ; 281 : 19618–19630. [CrossRef] [PubMed] [Google Scholar]
- Simmons A, Aluvihare V, McMichael A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 2001 ; 14 : 763–777. [CrossRef] [PubMed] [Google Scholar]
- Greenway AL, Holloway G, McPhee DA, etal. HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 2003 ; 28 : 323–335. [CrossRef] [PubMed] [Google Scholar]
- Pilon A, Pous C, Compartimentation et plasticite du reseau microtubulaire. Med Sci (Paris) 2013 ; 29 : 194–199. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.