Free Access
Issue
Med Sci (Paris)
Volume 28, Number 3, Mars 2012
Page(s) 288 - 296
Section Vieillissement
DOI https://doi.org/10.1051/medsci/2012283017
Published online 06 April 2012
  1. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965 ; 37 : 614–636. [CrossRef] [PubMed] [Google Scholar]
  2. Gire V. La sénescence : une barrière télomérique à l’immortalité ou une réponse cellulaire aux stress physiologiques ? Med Sci (Paris) 2005 ; 21 : 491–497. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 1973 ; 41 : 181–190. [CrossRef] [PubMed] [Google Scholar]
  4. Stein GH, Dulic V. Origins of G1 arrest in senescent human fibroblasts. Bioessays 1995 ; 17 : 537–543. [CrossRef] [PubMed] [Google Scholar]
  5. D’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003 ; 426 : 194–198. [CrossRef] [PubMed] [Google Scholar]
  6. Bischof O, Dejean A, Pineau P. Une revue de la sénescence cellulaire - Ami ou ennemi de la promotion tumorale ? Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991 ; 196 : 33–39. [CrossRef] [PubMed] [Google Scholar]
  8. Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer 2009 ; 9 : 738–748. [CrossRef] [PubMed] [Google Scholar]
  9. Baus F, Gire V, Fisher D, et al. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. Embo J 2003 ; 22 : 3992–4002. [CrossRef] [PubMed] [Google Scholar]
  10. Chicas A, Wang X, Zhang C, et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 2010 ; 17 : 376–387. [CrossRef] [PubMed] [Google Scholar]
  11. Vernier M, Bourdeau V, Gaumont-Leclerc MF, et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 2011 ; 25 : 41–50. [Google Scholar]
  12. Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest 2004 ; 114 : 1299–1307. [CrossRef] [PubMed] [Google Scholar]
  13. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16(Ink4a)-positive senescent cells delays ageing-associated disorders. Nature 2011 ; 479 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  14. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 2006 ; 7 : 667–677. [CrossRef] [PubMed] [Google Scholar]
  15. Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 2004 ; 14 : 501–513. [CrossRef] [PubMed] [Google Scholar]
  16. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev 2010 ; 24 : 2463–2479. [Google Scholar]
  17. Gorospe M, Abdelmohsen K. Microregulators come of age in senescence. Trends Genet 2011 ; 27 : 233–241. [CrossRef] [PubMed] [Google Scholar]
  18. Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003 ; 113 : 703–716. [CrossRef] [PubMed] [Google Scholar]
  19. Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 2007 ; 397 : 84–93. [CrossRef] [PubMed] [Google Scholar]
  20. Ferbeyre G, de Stanchina E, Querido E, et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000 ; 14 : 2015–2027. [Google Scholar]
  21. Kennedy AL, McBryan T, Enders GH, et al. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone, do not form robust senescence associated heterochromatin foci. Cell Div 2010 ; 5 : 16. [CrossRef] [PubMed] [Google Scholar]
  22. Di Micco R, Sulli G, Dobreva M, et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 2011 ; 13 : 292–302. [CrossRef] [PubMed] [Google Scholar]
  23. Prieur A, Besnard E, Babled A, Lemaitre JM. p53, p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nat Commun 2011 ; 2 : 473. [CrossRef] [PubMed] [Google Scholar]
  24. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011 ; 192 : 547–556. [CrossRef] [PubMed] [Google Scholar]
  25. Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008 ; 133 : 1019–1031. [CrossRef] [PubMed] [Google Scholar]
  26. Acosta JC, O’Loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008 ; 133 : 1006–1018. [CrossRef] [PubMed] [Google Scholar]
  27. Young AR, Narita M. Connecting autophagy to senescence in pathophysiology. Curr Opin Cell Biol 2010 ; 22 : 234–240. [CrossRef] [PubMed] [Google Scholar]
  28. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011 ; 12 : 21–35. [CrossRef] [PubMed] [Google Scholar]
  29. Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV. Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci USA 2010 ; 107 : 9660–9664. [CrossRef] [Google Scholar]
  30. Pani G. From growing to secreting: New roles for mTOR in aging cells. Cell Cycle 2011 ; 10 : 2450–2453. [CrossRef] [PubMed] [Google Scholar]
  31. Narita M, Young AR, Arakawa S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011 ; 332 : 966–970. [CrossRef] [PubMed] [Google Scholar]
  32. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010 ; 10 : 51–57. [CrossRef] [PubMed] [Google Scholar]
  33. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005 ; 436 : 720–724. [CrossRef] [PubMed] [Google Scholar]
  34. Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006 ; 444 : 633–637. [CrossRef] [PubMed] [Google Scholar]
  35. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008 ; 134 : 657–667. [CrossRef] [PubMed] [Google Scholar]
  36. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. Pro-senescence therapy for cancer treatment. Nat Rev Cancer 2011 ; 11 : 503–511. [CrossRef] [PubMed] [Google Scholar]
  37. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008 ; 6 : 2853–2868. [CrossRef] [PubMed] [Google Scholar]
  38. Adams PD. Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 2009 ; 36 : 2–14. [CrossRef] [PubMed] [Google Scholar]
  39. Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011 ; 479 : 547–551. [CrossRef] [PubMed] [Google Scholar]
  40. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007 ; 130 : 223–233. [CrossRef] [PubMed] [Google Scholar]
  41. Herbig U, Ferreira M, Condel L, et al. Cellular senescence in aging primates. Science 2006 ; 311 : 1257. [CrossRef] [PubMed] [Google Scholar]
  42. Rodier F, Coppe JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009 ; 11 : 973–979. [CrossRef] [PubMed] [Google Scholar]
  43. Brondello JM, Philipot D, Djouad F, et al. Cellular senescence is a common characteristic shared by preneoplasic and osteo-arthritic tissue. Open Rheumatol J 2010 ; 4 : 10–14. [CrossRef] [PubMed] [Google Scholar]
  44. Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 2007 ; 8 : 715–722. [CrossRef] [PubMed] [Google Scholar]
  45. Lapasset L, Milhavet O, Prieur A, et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 2011 ; 25 : 2248–2253. [Google Scholar]
  46. Mudhasani R, Zhu Z, Hutvagner G, et al. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 2008 ; 181 : 1055–1063. [CrossRef] [PubMed] [Google Scholar]
  47. Passos JF, Saretzki G, von Zglinicki T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 2007 ; 35 : 7505–7513. [CrossRef] [PubMed] [Google Scholar]
  48. Yoon YS, Yoon DS, Lim IK, et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 2006 ; 209 : 468–480. [CrossRef] [PubMed] [Google Scholar]
  49. Lenaers G, Amati-Bonneau P, Delettre C, et al. De la levure aux maladies neurodégénératives - Dix ans d’exploration des pathologies de la dynamique mitochondriale. Med Sci (Paris) 2010 ; 26 : 836–841. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011 ; 470 : 359–365. [CrossRef] [PubMed] [Google Scholar]
  51. Lacroix M, Linares L, LeCam L. Le Yin et le Yang de la sénescence : est-il possible de vieillir sans développer de cancer ? Med Sci (Paris) 2012 ; 28 : 245–247. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Rimmelé P, Zhang X, Ghaffari S. Rôle des facteurs de transcription FoxO dans la maintenance des cellules souches. Med Sci (Paris) 2012 ; 28 : 250–254. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.