Free Access
Med Sci (Paris)
Volume 28, Number 3, Mars 2012
Page(s) 297 - 304
Section Vieillissement
Published online 06 April 2012
  1. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998 ; 282 : 2012–2018. [Google Scholar]
  2. Johnson TE, Wood WB. Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci USA 1982 ; 79 : 6603–6607. [CrossRef] [Google Scholar]
  3. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993 ; 366 : 461-464. [CrossRef] [PubMed] [Google Scholar]
  4. Dong MQ, Venable J D, Au N, et al. Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 2007 ; 317 : 660–663. [CrossRef] [PubMed] [Google Scholar]
  5. Van Raamsdonk JM, Hekimi S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 2009 ; 5 : e1000361. [CrossRef] [PubMed] [Google Scholar]
  6. Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 2010 ; 8 : e1000556. [CrossRef] [PubMed] [Google Scholar]
  7. [Google Scholar]
  8. Château MT, Araiz C, Descamps S, Galas S. Klotho interferes with a novel FGF-signalling pathway and insulin/Igf-like signalling to improve longevity and stress resistance in Caenorhabditis elegans. Aging 2010 ; 2 : 567–581. [PubMed] [Google Scholar]
  9. Arking DE, Krebsova A, Macek M Sr, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA 2002 ; 99 : 856–861. [CrossRef] [Google Scholar]
  10. Araiz C, Château MT, Descamps S, Galas S. Quantitative genomics in Caenorhabditis elegans : Identification strategies for new human therapeutic targets and molecular mechanisms. ITBM-RBM 2008 ; 29 : 289–296. [Google Scholar]
  11. Willott JF, Hnath Chisolm T, Lister JJ. Modulation of presbycusis: current status and future directions. Audiol Neurootol 2001 ; 6 : 231–249. [Google Scholar]
  12. Schuknecht HF, Gacek MR. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 1993 ; 102 : 1–16. [Google Scholar]
  13. Menardo J, Tang Y, Ladrech S, et al. Oxidative stress, inflammation and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse cochlea. Antioxid Redox Signal 2012 ; 16 : 263–274. [Google Scholar]
  14. Henry KR. Influence of genotype and age on noise-induced auditory losses. Behav Genet 1982 ; 12 : 563–573. [CrossRef] [PubMed] [Google Scholar]
  15. Li HS. Influence of genotype and age on acute acoustic trauma and recovery in CBA/Ca and C57BL/6J mice. Acta Oto-Laryngol 1992 ; 112 : 956–967. [CrossRef] [Google Scholar]
  16. Erway LC, Shiau YW, Davis RR, Krieg EF. Genetics of age-related hearing loss in mice. III. Susceptibility of inbred and F1 hybrid strains to noise-induced hearing loss. Hear Res 1996 ; 93 : 181–187. [CrossRef] [PubMed] [Google Scholar]
  17. Davis RR, Newlander JK, Ling X-B, et al. Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 2001 ; 155 : 82–90. [CrossRef] [PubMed] [Google Scholar]
  18. Johnson KR, Erway LC, Cook SA, et al. A major gene affecting age-related hearing loss in C57BL/ 6J mice. Hear Res 1997 ; 114 : 83–92. [CrossRef] [PubMed] [Google Scholar]
  19. Kocher W. Investigations of the genetics and pathology of the development of a late-appearing hereditary type of deafness in the mouse. Arch Ohren-Nasen Kehlkopfheilkd 1960 ; 177 : 108. [CrossRef] [Google Scholar]
  20. Ohlemiller KK, Gagnon PM. Cellular correlates of progressive hearing loss in 129S6/SvEv mice. J Comp Neurol 2004 ; 469 : 377–390. [CrossRef] [PubMed] [Google Scholar]
  21. Felder E, Kanonier G, Scholtz A, et al. Quantitative evaluation of cochlear neurons and computer-aided three-dimensional reconstruction of spiral ganglion cells in humans with a peripheral loss of nerve fibers. Hear Res 1997 ; 105 : 183–190. [CrossRef] [PubMed] [Google Scholar]
  22. Spalding KL, Bhardwaj RD, Buchholz BA, et al. Retrospective birth dating of cells in humans. Cell 2005 ; 122 : 133–143. [CrossRef] [PubMed] [Google Scholar]
  23. Shors TJ, Miesegaes G, Beylin A, et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001 ; 410 : 372–376. [CrossRef] [PubMed] [Google Scholar]
  24. Coras R, Siebzehnrubl FA, Pauli E, et al. Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain 2010 ; 133 : 3359–3372. [CrossRef] [PubMed] [Google Scholar]
  25. Jessberger S, Gage FH. Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychol Aging 2008 ; 23 : 684–691. [CrossRef] [PubMed] [Google Scholar]
  26. Knoth R, Singec I, Ditter M, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 2010 ; 5 : e8809. [CrossRef] [PubMed] [Google Scholar]
  27. Marner L, Nyengaard JR, Tang Y, Pakkenberg B. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 2003 ; 462 : 144–152. [CrossRef] [PubMed] [Google Scholar]
  28. Bernier PJ, Bedard A, Vinet J, et al. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA 2002 ; 99 : 11464–11469. [CrossRef] [Google Scholar]
  29. Loerch PM, Lu T, Dakin KA, et al. Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 2008 ; 3 : e3329. [CrossRef] [PubMed] [Google Scholar]
  30. Perret M, Aujart F. Vieillissement et rythmes biologiques chez les primates. Med Sci (Paris) 2006 ; 22 : 279–283. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Mestre-Frances N, Keller E, Calenda A, et al. Immunohistochemical analysis of cerebral cortical and vascular lesions in the primate Microcebus murinus reveal distinct amyloid beta1–42 and beta1–40 immunoreactivity profiles. Neurobiol Dis 2000 ; 7 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  32. Kraska A, Dorieux O, Picq J-L, et al. Age-associated cerebral atrophy in mouse lemur primates. Neurobiol Aging 2011 ; 32 : 894–906. [CrossRef] [PubMed] [Google Scholar]
  33. Trouche SG, Maurice T, Rouland S, et al. The three panel runway maze adapted to Microcebus murinus reveals age-related differences in memory and perseverance performances. Neurobiol Learn Mem 2010 ; 94 : 100–106. [CrossRef] [PubMed] [Google Scholar]
  34. Joly M, Deputte B, Verdier JM. Age effect on olfactory discrimination in a non-human primate, Microcebus murinus. Neurobiol Aging 2006 ; 27 : 1045–1049. [CrossRef] [PubMed] [Google Scholar]
  35. Abdel Rassoul R, Alves S, Pantesco V, et al. Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus Alzheimer’s disease-like pathology. Plos One 2010 ; 5 : e122770 [CrossRef] [Google Scholar]
  36. Guo Y, Zhang C, Du X, et al. Morphological and functional alterations of the cochlea in apolipoprotein E gene deficient mice. Hear Res 2005 ; 208 : 54–67. [CrossRef] [PubMed] [Google Scholar]
  37. Johnson KR, Zheng QY. Ahl2, a second locus affecting age-related hearing loss in mice. Genomics 2002 ; 80 : 461–464. [CrossRef] [PubMed] [Google Scholar]
  38. Nemoto M, Morita Y, Mishima Y, et al. Ahl3, a third locus on mouse chromosome 17 affecting age-related hearing loss. Biochem Biophys Res Commun 2004 ; 324 : 1283–1288. [CrossRef] [PubMed] [Google Scholar]
  39. Minowa O, Ikeda K, Sugitani Y, et al. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 1999 ; 285 : 1408–1411. [CrossRef] [PubMed] [Google Scholar]
  40. Hildebrand MS, de Silva MG, Klockars T, et al. Characterisation of DRASIC in the mouse inner ear. Hear Res 2004 ; 190 : 149–160. [CrossRef] [PubMed] [Google Scholar]
  41. Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005 ; 309 : 481–484. [CrossRef] [PubMed] [Google Scholar]
  42. Bao J, Lei D, Du Y, et al. Requirement of nicotinic acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neurons during aging. J Neurosci 2005 ; 25 : 3041–3045. [CrossRef] [PubMed] [Google Scholar]
  43. Johnson KR, Zheng QY, Bykhovskaya Y, et al. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 2001 ; 27 : 191–194. [CrossRef] [PubMed] [Google Scholar]
  44. Noben-Trauth K, Zheng QY, Johnson KR, et al. mdfw: a deafness susceptibility locus that interacts with deaf waddler (dfw). Genomics 1997 ; 44 : 266–272. [CrossRef] [PubMed] [Google Scholar]
  45. Zheng QY, Yan D, Ouyang XM, et al. Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet 2005 ; 14 : 103–111. [CrossRef] [PubMed] [Google Scholar]
  46. Davis RR, Newlander JK, Ling X, et al. Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 2001 ; 155 : 82–90. [CrossRef] [PubMed] [Google Scholar]
  47. Holme RH, Steel KP. Stereocilia defects in waltzer (Cdh23), shaker1 (Myo7a) and double waltzer/shaker1 mutant mice. Hear Res 2002 ; 169 : 13–23. [CrossRef] [PubMed] [Google Scholar]
  48. Davis RR, Kozel P, Erway LC. Genetic influences in individual susceptibility to noise: a review. Noise Health 2003 ; 5 : 19–28. [Google Scholar]
  49. Keithley EM, Canto C, Zheng QY, et al. Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res 2005 ; 209 : 76–85. [CrossRef] [PubMed] [Google Scholar]
  50. Tabuchi K, Suzuki M, Mizuno A, et al. Hearing impairment in TRPV4 knockout mice. Neurosci Lett 2005 ; 382 : 304–308. [CrossRef] [PubMed] [Google Scholar]
  51. Terret C, Solari F. L’homéostasie métabolique au cœur du vieillissement. Med Sci (Paris) 2012 ; 28 : 311–315. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Brunet A. Bien vieillir : la voie de signalisation insuline-FOXO et la longévité. Med Sci (Paris) 2012 ; 28 : 316–320. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.