Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 5, Mai 2010
Page(s) 487 - 496
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010265487
Publié en ligne 15 mai 2010
  1. Polanczyk G, de Lima MS, Horta BL, et al. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 2007; 164 : 942–8. [Google Scholar]
  2. Spencer TJ, Biederman J, Mick E. Attention-deficit/hyperactivity disorder: diagnosis, lifespan, comorbidities, and neurobiology. Ambul Pediatr 2007; 7 (suppl 1) : 73–81. [Google Scholar]
  3. Mannuzza S, Klein RG, Bessler A, et al. Adult psychiatric status of hyperactive boys grown up. Am J Psychiatry 1998; 155 : 493–8. [Google Scholar]
  4. Galéra C, Melchior M, Chastang JF, et al. Childhood and adolescent hyperactivity-inattention symptoms and academic achievement 8 years later: the GAZEL Youth study. Psychol Med 2009; 39 : 1895–906. [Google Scholar]
  5. Mannuzza S, Klein RG, Moulton JL 3rd. Lifetime criminality among boys with attention deficit hyperactivity disorder: a prospective follow-up study into adulthood using official arrest records. Psychiatr Res 2008; 160 : 237–46. [Google Scholar]
  6. Faraone SV, Doyle AE. The nature and heritability of attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin North Am 2001; 10 : 299–316, viii–ix. [Google Scholar]
  7. Langley K, Rice F, van den Bree MB, Thapar A. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. Minerva Pediatr 2005; 57 : 359–71. [Google Scholar]
  8. Thapar A, Fowler T, Rice F, et al. Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring. Am J Psychiatry 2003; 160 : 1985–9. [Google Scholar]
  9. Mill J, Petronis A. Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry 2008; 49 : 1020–30. [Google Scholar]
  10. Sonuga-Barke EJ. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 2005; 57 : 1231–8. [Google Scholar]
  11. Rommelse NN, Arias-Vásquez A, Altink ME, et al. Neuropsychological endophenotype approach to genome-wide linkage analysis identifies susceptibility loci for ADHD on 2q21.1 and 13q12.11. Am J Hum Genet 2008 : 83 : 99–105. [Google Scholar]
  12. Volkow ND, Wang GJ, Fowler JS, Ding YS. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57 : 1410–5. [Google Scholar]
  13. Sagvolden T, Johansen EB, Aase H, Russell VA. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 2005; 28 : 397–419 ; discussion 419–68. [Google Scholar]
  14. Easton N, Shah YB, Marshall FH, et al. Guanfacine produces differential effects in frontal cortex compared with striatum: assessed by phMRI BOLD contrast. Psychopharmacology (Berl) 2006; 189 : 369–85. [Google Scholar]
  15. Brennan AR, Arnsten AF. Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function. Ann NY Acad Sci 2008; 1129 : 236–45. [Google Scholar]
  16. Gonon F. The dopaminergic hypothesis of attention-deficit/hyperactivity disorder needs re-examining. Trends Neurosci 2009; 32 : 2–8. [Google Scholar]
  17. Van der Kooij MA, Glennon JC. Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav Rev 2007; 31 : 597–618. [Google Scholar]
  18. DasBanerjee T, Middleton FA, Berger DF, et al. A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study. Am J Med Genet B Neuropsychiatr Genet 2008; 147B : 1554–63. [Google Scholar]
  19. Zhou K, Chen W, Buitelaar J, et al. Genetic heterogeneity in ADHD: DAT1 gene only affects probands without CD. Am J Med Genet 2008; 147B : 1481–7. [Google Scholar]
  20. Neale B, Faraone S. Perspective on the genetics of attention deficit/hyperactivity disorder. Am J Med Genet 2008; 147B : 1334–6. [Google Scholar]
  21. Zhou K, Dempfle A, Arcos-Burgos M, et al. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am J Med Genet 2008; 147B : 1392–8. [Google Scholar]
  22. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009; 461 : 747–53. [Google Scholar]
  23. Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007; 8 : 355–67. [Google Scholar]
  24. Mill J, Richards S, Knight J, et al. Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHD. Mol Psychiatry 2004; 9 : 801–10. [Google Scholar]
  25. Winsberg BG, Comings DE. Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry 1999; 38 : 1474–7. [Google Scholar]
  26. Purper-Ouakil D, Wohl M, Orejarena S, et al. Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: Association with the dopamine transporter gene (SLC6A3). Am J Med Genet Neuropsychiatr Genet 2008; 147B : 1425–30. [Google Scholar]
  27. McGough J, McCracken J, Swanson J, et al. Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 2006; 45 : 1314–22. [Google Scholar]
  28. Seeger G, Schloss P, Schmidt MH. Functional polymorphism within the promotor of the serotonin transporter gene is associated with severe hyperkinetic disorders. Mol Psychiatry 2001; 6 : 235–8. [Google Scholar]
  29. Neuman RJ, Lobos E, Reich W, et al. Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry 2007; 61 : 1320–8. [Google Scholar]
  30. Todd RD, Neuman RJ. Gene-environment interactions in the development of combined type ADHD: evidence for a synapse-based model. Am J Med Genet Neuropsychiatr Genet 2007; 144B : 971–5. [Google Scholar]
  31. Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 2010; 35 : 278–300. [Google Scholar]
  32. Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 2007; 61 : 1361–9. [Google Scholar]
  33. Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA 2007; 104 : 19649–54. [Google Scholar]
  34. Dickstein SG, Bannon K, Castellanos FX, Milham MP. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 2006; 47 : 1051–62. [Google Scholar]
  35. Paloyelis Y, Mehta MA, Kuntsi J, Asherson P. Functional MRI in ADHD: a systematic literature review. Exp Rev Neurother 2007; 7 : 1337–56. [Google Scholar]
  36. Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 2000; 24 : 31–9. [Google Scholar]
  37. Heyser CJ, Wilson MC, Gold LH. Coloboma hyperactive mutant exhibits delayed neurobehavioral developmental milestones. Brain Res Dev Brain Res 1995; 89 : 264–9. [Google Scholar]
  38. Gainetdinov RR, Caron MG. An animal model of attention deficit hyperactivity disorder. Mol Med Today 2000; 6 : 43–4. [Google Scholar]
  39. Besson M, Suarez S, Cormier A, et al. Chronic nicotine exposure has dissociable behavioural effects on control and beta2−/− mice. Behav Genet 2008; 38 : 503–14. [Google Scholar]
  40. Moon J, Beaudin AE, Verosky S, et al. Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behav Neurosci 2006; 120 : 1367–79. [Google Scholar]
  41. Li D, Sham PC, Owen MJ, He L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 2006; 15 : 2276–84. [Google Scholar]
  42. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 2009; 126 : 51–90. [Google Scholar]
  43. Yang B, Chan RC, Jing J, et al. A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3’-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet Neuropsychiatr Genet 2007; 144B : 541–50. [Google Scholar]
  44. Smoller JW, Biederman J, Arbeitman L, et al. Association between the 5HT1B receptor gene (HTR1B) and the inattentive subtype of ADHD. Biol Psychiatry 2006; 59 : 460–7. [Google Scholar]
  45. Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57 : 1313–23. [Google Scholar]
  46. Mick E, Faraone SV. Genetics of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin North Am 2008; 17 : 261–84. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.