Free Access
Med Sci (Paris)
Volume 26, Number 5, Mai 2010
Page(s) 497 - 503
Section M/S revues
Published online 15 May 2010
  1. Watts PC, Buley KR, Sanderson S, et al. Parthenogenesis in Komodo dragons. Nature 2006; 444 : 1021–2. [Google Scholar]
  2. Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature 1984; 311 : 374–6. [Google Scholar]
  3. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984; 37 : 179–83. [Google Scholar]
  4. Bourc’his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science 2001; 294 : 2536–9. [Google Scholar]
  5. Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429 : 900–3. [Google Scholar]
  6. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69 : 915–26. [Google Scholar]
  7. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293 : 1089–93. [Google Scholar]
  8. Nakamura T, Arai Y, Umehara H, et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 2007; 9 : 64–71. [Google Scholar]
  9. Li X, Ito M, Zhou F, et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15 : 547–57. [Google Scholar]
  10. Luedi PP, Hartemink AJ, Jirtle RL. Genome-wide prediction of imprinted murine genes. Genome Res 2005; 15 : 875–84. [Google Scholar]
  11. Ciccone DN, Su H, Hevi S, et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 2009; 461 : 415–8. [Google Scholar]
  12. Ooi SK, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007; 448 : 714–7. [Google Scholar]
  13. Chotalia M, Smallwood SA, Ruf N, et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 2009; 23 : 105–17. [Google Scholar]
  14. Edwards CA, Rens W, Clarke O, et al. The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals. BMC Evol Biol 2007; 7 : 157. [Google Scholar]
  15. Renfree MB, Hore TA, Shaw G, et al. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet 2009; 10 : 241–62. [Google Scholar]
  16. Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 1991; 7 : 45–9. [Google Scholar]
  17. Barlow DP, Stöger R, Herrmann BG, et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 1991; 349 : 84–7. [Google Scholar]
  18. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64 : 849–59. [Google Scholar]
  19. Wang X, Sun Q, McGrath SD, et al. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 2008; 3 : e3839. [Google Scholar]
  20. Curley JP, Barton S, Surani A, Keverne EB. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci 2004; 271 : 1303–9. [Google Scholar]
  21. Smits G, Mungall AJ, Griffiths-Jones S, et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet 2008; 40 : 971–6. [Google Scholar]
  22. Warren WC, Hillier LW, Marshall Graves JA, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008; 453 : 175–83. [Google Scholar]
  23. Pask AJ, Papenfuss AT, Ager EI, et al. Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol 2009; 10 : R1. [Google Scholar]
  24. Yokomine T, Hata K, Tsudzuki M, Sasaki H. Evolution of the vertebrate DNMT3 gene family: a possible link between existence of DNMT3L and genomic imprinting. Cytogenet Genome Res 2006; 113 : 75–80. [Google Scholar]
  25. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004; 431 : 96–9. [Google Scholar]
  26. Monk D, Arnaud P, Apostolidou S, et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 2006; 103 : 6623–8. [Google Scholar]
  27. Rapkins RW, Hore T, Smithwick M, et al. Recent assembly of an imprinted domain from non-imprinted components. PLoS Genet 2006; 2 : e182. [Google Scholar]
  28. Suzuki S, Ono R, Narita T, et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 2007; 3 : e55. [Google Scholar]
  29. Sekita Y, Wagatsuma H, Nakamura K, et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 2008; 40 : 243–8. [Google Scholar]
  30. Wood AJ, Roberts RG, Monk D, et al. A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation. PLoS Genet 2007; 3 : e20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.