Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 5, Mai 2010
Page(s) 497 - 503
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010265497
Publié en ligne 15 mai 2010
  1. Watts PC, Buley KR, Sanderson S, et al. Parthenogenesis in Komodo dragons. Nature 2006; 444 : 1021–2. [Google Scholar]
  2. Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature 1984; 311 : 374–6. [Google Scholar]
  3. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984; 37 : 179–83. [Google Scholar]
  4. Bourc’his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science 2001; 294 : 2536–9. [Google Scholar]
  5. Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429 : 900–3. [Google Scholar]
  6. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69 : 915–26. [Google Scholar]
  7. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293 : 1089–93. [Google Scholar]
  8. Nakamura T, Arai Y, Umehara H, et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 2007; 9 : 64–71. [Google Scholar]
  9. Li X, Ito M, Zhou F, et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15 : 547–57. [Google Scholar]
  10. Luedi PP, Hartemink AJ, Jirtle RL. Genome-wide prediction of imprinted murine genes. Genome Res 2005; 15 : 875–84. [Google Scholar]
  11. Ciccone DN, Su H, Hevi S, et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 2009; 461 : 415–8. [Google Scholar]
  12. Ooi SK, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007; 448 : 714–7. [Google Scholar]
  13. Chotalia M, Smallwood SA, Ruf N, et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 2009; 23 : 105–17. [Google Scholar]
  14. Edwards CA, Rens W, Clarke O, et al. The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals. BMC Evol Biol 2007; 7 : 157. [Google Scholar]
  15. Renfree MB, Hore TA, Shaw G, et al. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet 2009; 10 : 241–62. [Google Scholar]
  16. Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 1991; 7 : 45–9. [Google Scholar]
  17. Barlow DP, Stöger R, Herrmann BG, et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 1991; 349 : 84–7. [Google Scholar]
  18. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64 : 849–59. [Google Scholar]
  19. Wang X, Sun Q, McGrath SD, et al. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 2008; 3 : e3839. [Google Scholar]
  20. Curley JP, Barton S, Surani A, Keverne EB. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci 2004; 271 : 1303–9. [Google Scholar]
  21. Smits G, Mungall AJ, Griffiths-Jones S, et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet 2008; 40 : 971–6. [Google Scholar]
  22. Warren WC, Hillier LW, Marshall Graves JA, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008; 453 : 175–83. [Google Scholar]
  23. Pask AJ, Papenfuss AT, Ager EI, et al. Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol 2009; 10 : R1. [Google Scholar]
  24. Yokomine T, Hata K, Tsudzuki M, Sasaki H. Evolution of the vertebrate DNMT3 gene family: a possible link between existence of DNMT3L and genomic imprinting. Cytogenet Genome Res 2006; 113 : 75–80. [Google Scholar]
  25. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004; 431 : 96–9. [Google Scholar]
  26. Monk D, Arnaud P, Apostolidou S, et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 2006; 103 : 6623–8. [Google Scholar]
  27. Rapkins RW, Hore T, Smithwick M, et al. Recent assembly of an imprinted domain from non-imprinted components. PLoS Genet 2006; 2 : e182. [Google Scholar]
  28. Suzuki S, Ono R, Narita T, et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 2007; 3 : e55. [Google Scholar]
  29. Sekita Y, Wagatsuma H, Nakamura K, et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 2008; 40 : 243–8. [Google Scholar]
  30. Wood AJ, Roberts RG, Monk D, et al. A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation. PLoS Genet 2007; 3 : e20. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.