Free Access
Med Sci (Paris)
Volume 26, Number 5, Mai 2010
Page(s) 481 - 486
Section M/S revues
Published online 15 May 2010
  1. Cheng T, Rodriguez N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21-waf1. Science 2000; 287 : 1804–08. [Google Scholar]
  2. Yu H, Yuan Y, Shen H, Cheng T. Hematopoietic stem cell exhaustion impacted by p18 and p21 in opposite manner. Blood 2009; 107 : 1200–06. [Google Scholar]
  3. Zhen Y, Zheng J, Zhao Y. Regulatory CD4+CD25+ T cells and macrophages: communication between two regulators of effector T cells. Inflamm Res 2008; 57 : 564–70. [Google Scholar]
  4. Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001; 36 : 1007–24. [Google Scholar]
  5. Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004; 76 : 509–13. [Google Scholar]
  6. Liu M, Iavarone A, Freedman LP. Transcriptional activation of the human p21(WAF1/CIP1) gene by retinoic acid receptor. Correlation with retinoid induction of U937 cell differentiation. J Biol Chem 1996; 271 : 31723–8. [Google Scholar]
  7. Liu M, Lee MH, Cohen M, et al. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 1996; 10 : 142–53. [Google Scholar]
  8. Rousseau D, Cannella, D, Boulaire J, et al. Growth inhibition by CDK-cyclin and PCNA binding domains of p21 occurs by distinct mechanisms and is regulated by ubiquitin-proteasome pathway. Oncogene 1999; 18 : 3290–302. [Google Scholar]
  9. Prabhu NS, Blagosklonny MV, Zeng YX, et al. Suppression of cancer cell growth by adenovirus expressing p21(WAF1/CIP1) deficient in PCNA interaction. Clin Cancer Res 1996; 2 : 1221–9. [Google Scholar]
  10. Agarwal ML, Agarwal A, Taylor WR, Stark GR. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 1995; 92 : 8493–7. [Google Scholar]
  11. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75 : 817–25. [Google Scholar]
  12. Brugarolas J, Bronson RT, Jacks T. p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J Cell Biol 1998; 141 : 503–14. [Google Scholar]
  13. Franklin DS, Godfrey VL, O’Brien DA, et al. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20 : 6147–58. [Google Scholar]
  14. Adnane J, Jackson RJ, Nicosia SV, et al. Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 2000; 19 : 5338–47. [Google Scholar]
  15. Yang WC, Mathew J, Velcich A, et al. Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res 2001; 61 : 565–9. [Google Scholar]
  16. Lebel M, Cardiff RD, Leder P. Tumorigenic effect of nonfunctional p53 or p21 in mice mutant in the Werner syndrome helicase. Cancer Res 2001; 61 : 1816–9. [Google Scholar]
  17. Wang YA, Elson A, Leder P. Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc Natl Acad Sci USA 1997; 94 : 14590–5. [Google Scholar]
  18. De la Cueva E, García-Cao I, Herranz M, et al. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 2006; 25 : 4128–32. [Google Scholar]
  19. Weinberg WC, Fernandez-Salas E, Morgan DL, et al. Genetic deletion of p21WAF1 enhances papilloma formation but not malignant conversion in experimental mouse skin carcinogenesis. Cancer Res 1999; 59 : 2050–4. [Google Scholar]
  20. Topley GI, Okuyama R, Gonzales JG, et al. p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc Natl Acad Sci USA 1999; 96 : 9089–94. [Google Scholar]
  21. 21. Martín-Caballero J, Flores JM, García-Palencia P, Serrano M. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 2001; 61 : 6234–8. [Google Scholar]
  22. 22. Dubourdeau M, Chêne G, Coste A, et al. Opposite roles of STAT and PPAR gamma in the induction of p21(WAF1) expression by IL-13 in human peripheral blood monocytes. Cytokine Network 2008; 19 : 156–65. [Google Scholar]
  23. Niculescu AB, Chen X, Smeets M, et al. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18 : 629–43. [Google Scholar]
  24. Xaus J, Cardo M, Valledor AF, et al. Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 1999; 11 : 103–13. [Google Scholar]
  25. Golde DW, Byers LA, Finley TN. Proliferative capacity of human alveolar macrophage. Nature 1974; 247 : 373–5. [Google Scholar]
  26. Schlatt S, de Kretser DM, Hedger MP. J Reprod Fertil 1999; 116 : 223–8. [Google Scholar]
  27. Langstein J, Michel J, Schwarz H. CD137 induces proliferation and endomitosis in monocytes. Blood 1999; 94 : 3161–8. [Google Scholar]
  28. Jin YH, Yoo KJ, Lee YH, Lee SK. Caspase 3-mediated cleavage of p21WAF1/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. J Biol Chem 2000; 275 : 30256–63. [Google Scholar]
  29. Xaus J, Cardo M, Valledor AF, et al. Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 1999; 11 : 103–13. [Google Scholar]
  30. Asada M, Yamada T, Ichijo H, et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 1999; 18 : 1223–34. [Google Scholar]
  31. Suzuki A, Tsutomi Y, Akahane K, et al. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998; 17 : 931–9. [Google Scholar]
  32. Huang S, Shu L, Dilling MB, et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 2003; 11 : 1491–501. [Google Scholar]
  33. Sozzani P, Hasan L, Séguélas MH, et al. IL- 13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production. Biochem Biophys Res Commun 1998; 244 : 665–70. [Google Scholar]
  34. Xu B, Bhattacharjee A, Roy B, et al. Role of protein kinase C isoforms in the regulation of interleukin-13-induced 15-lipoxygenase gene expression in human monocytes. J Biol Chem 2004; 279 : 15954–60. [Google Scholar]
  35. Xu B, Bhattacharjee A, Roy B, et al. Interleukin-13 induction of 15-lipoxygenase gene expression requires p38 mitogen-activated protein kinase-mediated serine 727 phosphorylation of Stat1 and Stat3. Mol Cell Biol 2003; 23 : 3918–28. [Google Scholar]
  36. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998 : 391 : 82–6. [Google Scholar]
  37. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447 : 1116–20. [Google Scholar]
  38. Munteanu A, Taddei M, Tamburini I, et al. Antagonistic effects of oxidized low density lipoprotein and alpha-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase B and peroxisome proliferator-activated receptor-gamma. J Biol Chem 2006; 281 : 6489–97. [Google Scholar]
  39. Dridi W, Krabchi K, Gadji M, et al. Activité dominante négative des protéines p53 mutées. Med Sci (Paris) 2006; 22 : 301–7. [Google Scholar]
  40. Murad H, Fiatte C, Brunner E, et al. PPAR et interactions des cellules entre elles ou avec la matrice extracellulaire. Med Sci (Paris) 2007; 23 : 515–8. [Google Scholar]
  41. Mege JL, Capo C. La polarisation des macrophages, le nœud gordien des infections bactériennes ? Med Sci (Paris) 2010; 26 : 83–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.