Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 12, Décembre 2003
Page(s) 1218 - 1225
Section M/S revues
DOI https://doi.org/10.1051/medsci/200319121218
Publié en ligne 15 décembre 2003
  1. Felix MA, Labouesse M, Ségalat L. Caenorhabditis elegans, un organisme modèle en biologie. Paris : Éditions Hermann, 2002 : 194 p. [Google Scholar]
  2. The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans : a platform for investigating biology. Science 1998; 282 : 2012–8. [Google Scholar]
  3. Goffeau A, Barrell BG, Bussey H, et al. Life with 6 000 genes. Science 1996; 274 : 63–7. [Google Scholar]
  4. Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000; 287 : 2185–95. [Google Scholar]
  5. Jansen G. Gene inactivation in Caenorhabditis elegans. Curr Genomics 2002; 3 : 59–68. [Google Scholar]
  6. Rual JF, Lamesh P, Vandenhaute J, Vidal M. The Caenorhabditis elegans interactome mapping project. Curr Genomics 2002; 3 : 83–94. [Google Scholar]
  7. Reinke V. Defining development through gene expression profiling. Curr Genomics 2002; 3 : 95–111. [Google Scholar]
  8. Baumeister R. The physiological role of presenilins in cellular differentiation : lessons from model organisms. Eur Arch Psychiatr Clin Neurosci 1999; 249 : 280–7. [Google Scholar]
  9. Bessou C, Giugia JB, Franks CJ, Holden-Dye L, Segalat, L. Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 1998; 2 : 61–72. [Google Scholar]
  10. Gieseler K, Bessou C, Segalat L. Dystrobrevin- and dystrophin-like mutants display similar phenotypes in the nematode Caenorhabditis elegans. Neurogenetics 1999; 2 : 87–90. [Google Scholar]
  11. Gieseler K, Mariol MC, Bessou C, et al. Molecular, genetic and physiological characterisation of dystrobrevin-like (dyb-1) mutants of Caenorhabditis elegans. J Mol Biol 2001; 307 : 107–17. [Google Scholar]
  12. Gieseler K, Grisoni K, Mariol MC, Segalat L. Overexpression of dystrobrevin delays locomotion defects and muscle degeneration in a dystrophin-deficient Caenorhabditis elegans. Neuromusc Disord 2002; 12 : 371–7. [Google Scholar]
  13. Jaffrey SR, Benfenati F, Snowman AM, Czernik AJ, Snyder SH. Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc Natl Acad Sci USA 2002; 99 : 3199–204. [Google Scholar]
  14. Gieseler K, Grisoni K, Segalat L. Genetic suppression of phenotypes arising from mutations in dystrophin-related genes in Caenorhabditis elegans. Curr Biol 2000; 10 : 1092–7. [Google Scholar]
  15. Mallouk N, Jacquemond V, Allard B. Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 2000; 97 : 4950–5. [Google Scholar]
  16. Mariol MC, Segalat L. Muscular degeneration in the absence of dystrophin is a calcium-dependent process. Curr Biol 2001; 11 : 1691–4. [Google Scholar]
  17. The Huntington’s disease collaborative research group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72 : 971–83. [Google Scholar]
  18. Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin : neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci USA 2001; 98 : 1811–6. [Google Scholar]
  19. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 1995; 11 : 155–63. [Google Scholar]
  20. Dragatsis I, Levine MS, Zeitlin S. Inactivation of hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 2000; 26 : 300–6. [Google Scholar]
  21. Sipione S, Cattaneo E. Modeling Huntington’s disease in cells, flies, and mice. Mol Neurobiol 2001; 23 : 21–51. [Google Scholar]
  22. Menalled LB, Chesselet MF. Mouse models of Huntington’s disease. Trends Pharmacol Sci 2002; 23 : 32–9. [Google Scholar]
  23. Rubinsztein DC. Lessons from animal models of Huntington’s disease. Trends Genet 2002; 18 : 202–9. [Google Scholar]
  24. Liu YF, Deth RC, Devys D. SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes. J Biol Chem 1997; 272 : 8121–4. [Google Scholar]
  25. Song C, Perides G, Liu YF. Expression of full-length polyglutamine-expanded huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC12) cells. J Biol Chem 2002; 277 : 6703–7. [Google Scholar]
  26. Humbert S, Bryson EA, Cordelières FP, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves huntingtin phosphorylation by Akt. Dev Cell 2002; 2 : 831–7. [Google Scholar]
  27. Nucifora FC Jr, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001; 291 : 2423–8. [Google Scholar]
  28. Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001; 293 : 493–8. [Google Scholar]
  29. Li SH, Cheng AL, Zhou H, et al. Interaction of Huntington disease protein with transcriptional activator sp1. Mol Cell Biol 2002; 22 : 1277–87. [Google Scholar]
  30. Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 2000; 101 : 57–66. [Google Scholar]
  31. Sisodia SS. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 1998; 95 : 1–4. [Google Scholar]
  32. Yu ZX, Li SH, Nguyen HP, Li XJ. Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice. Hum Mol Genet 2002; 11 : 905–14. [Google Scholar]
  33. Parker JA, Connolly JB, Wellington C, et al. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci USA 2001; 98 : 13318–23. [Google Scholar]
  34. Li SH, Li H, Torre ER, Li XJ. Expression of huntingtin-associated protein-1 in neuronal cells implicates a role in neuritic growth. Mol Cell Neurosci 2000; 16 : 168–83. [Google Scholar]
  35. Faber PW, Alter JR, MacDonald ME, Hart AC. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci USA 1999; 96 : 179–84. [Google Scholar]
  36. Fernandez-Funez P, Nino-Rosales ML, De Gouyon B, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000; 408 : 101–6. [Google Scholar]
  37. Higashiyama H, Hirose F, Yamaguchi M, et al. Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ 2002; 9 : 264–73. [Google Scholar]
  38. Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95 : 55–66. [Google Scholar]
  39. Chen M, Ona VO, Li M, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6 : 797–801. [Google Scholar]
  40. Ferrante RJ, Andreassen OA, Jenkins BG, et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 2000; 20 : 4389–97. [Google Scholar]
  41. Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001; 413 : 739–43. [Google Scholar]
  42. Abbott A. Neurologists strike gold in drug screen effort. Nature 2002; 417 : 109. [Google Scholar]
  43. Heemskerk J, Tobin AJ, Bain LJ. Teaching old drugs new tricks. Meeting of the neurodegeneration drug screening consortium, 7-8 April 2002, Washington, DC, USA. Trends Neurosci 2002; 25 : 494–6. [Google Scholar]
  44. Heemskerk J, Tobin AJ, Ravina B. From chemical to drug: neurodegeneration drug screening and the ethics of clinical trials. Nat Neurosci 2002; 5 (suppl 1) : 1027–9. [Google Scholar]
  45. Link CD. Transgenic invertebrate models of age-associated neurodegenerative diseases. Mech Ageing Dev 2001; 122 : 1639–49. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.