Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 1, Janvier 2003
Page(s) 77 - 83
Section M/S Revues
DOI https://doi.org/10.1051/medsci/200319177
Publié en ligne 15 janvier 2003
  1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284: 1318–22.
  2. Chicurel M. Bacterial biofilms and infections. Slimebusters. Nature 2000; 408: 284–6.
  3. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30: 295–304.
  4. Rahme LG, Ausubel FM, Cao H, et al. Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 2000; 97: 8815–21.
  5. Filloux A, Michel G, Bally M. GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. Microbiol Rev 1998; 22: 177–98.
  6. Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2000; 44: 640–6.
  7. Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001; 3: 255–64.
  8. Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 2001; 98: 6911–6.
  9. Wall D, Kaiser D. Type IV pili and cell motility. Mol Microbiol 1999; 32: 1–10.
  10. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998; 30: 285–93.
  11. Prigent-Combaret C, Brombacher E, Vidal O, et al. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 2001; 183: 7213–23.
  12. Sauer FG, Barnhart M, Choudhury D, Knight SD, Waksman G, Hultgren SJ. Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 2000; 10: 548–56.
  13. Whiteley M, Bangera MG, Bumgarner RE, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001; 413: 860–4.
  14. Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in Gramnegative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 2000; 97: 8789–93.
  15. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996; 21: 1137–46.
  16. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP. QscR, a modulator of quorumsensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2001; 98: 2752–7.
  17. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-tocell signals in the development of a bacterial biofilm. Science 1998; 280: 295–8.
  18. Manefield M, de Nys R, Kumar N, et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999; 145: 283–91.
  19. Garett ES, Perlegas D, Wozniak, DJ. Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 1999; 181: 7401–4
  20. Makin SA, Beveridge TJ. The influence of A-band and Bband lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 1996; 142: 299–307.
  21. O’Toole GA, Gibbs KA, Hager PW, Phibbs PV, Kolter R. The global carbon metabolism regulator Crc is a component of a signal transducion pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 2000; 182: 425–31
  22. Parkins MD, Ceri H, Storey DG. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 2001; 40: 1215–26.
  23. Dorel C, Vidal O, Prigent- Combaret C, Vallet I, Lejeune P. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 1999; 178: 169–75.
  24. Déziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilitie. J Bacteriol 2001; 183: 1195–204.
  25. Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature 2001; 412: 442–5.
  26. Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2000; 2: 59–68.
  27. Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 1998; 64: 4973–82.
  28. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S. Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 2000; 182: 6482–9.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.