Free Access
Med Sci (Paris)
Volume 19, Number 1, Janvier 2003
Page(s) 71 - 76
Section M/S Revues
Published online 15 January 2003
  1. Sorimachi H, Suzuki K. The structure of calpain. J Biochem 2001; 129: 653–64. [Google Scholar]
  2. Glading A, Lauffenburger DA, Wells A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol 2002; 12 : 46–54. [Google Scholar]
  3. Sato K, Kawashima S. Calpain function in the modulation of signal transduction molecules. Biol Chem 2001; 382: 743–51. [Google Scholar]
  4. Arthur JSC, Elce JS, Hegadorn C, Williams K, Greer PA. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 2000; 20: 4474–81. [Google Scholar]
  5. Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH. Disruption of the mouse m-calpain gene reveals an essential role in platelet function. Mol Cell Biol 2001; 21: 2213–20. [Google Scholar]
  6. Permutt MA, Bernal- Mizrachi E, Inoue H. Calpain 10: the first positional cloning of a gene for type 2 diabetes? J Clin Invest 2000; 106: 819–21. [Google Scholar]
  7. Baghdiguian S, Martin M, Richard I, et al. Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkBa/NF-kB pathway in limb-girdle muscular dystrophy type 2A. Nature Med 1999; 5: 503–11. [Google Scholar]
  8. Richard I, Roudaut C, Marchand S, et al. Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IқBa/nuclear factor қB pathway perturbation in mice. J Cell Biol 2000; 151: 1583–90. [Google Scholar]
  9. Shumway SD, Maki M, Miyamoto S. The PEST domain of IқBa is necessary and sufficient for in vitro degradation by m-calpain. J Biol Chem 1999; 274: 30874–81. [Google Scholar]
  10. Chen F, Demers LM, Vallyathan V, Lu Y, Castranova V, Shi X. Impairment of NF-қB activation and modulation of gene expression by calpastatin. Am J Physiol 2000; 279: C709–16. [Google Scholar]
  11. McDonald MC, Mota-Filipe H, Paul A, et al. Calpain inhibitor I reduces the activation of nuclear factor-κB and organ injury/dysfunction in hemorragic shock. FASEB J 2001; 15: 171–86. [Google Scholar]
  12. Cuzzocrea S, McDonald MC, Mazzon E, et al. Calpain inhibitor I reduces the development of acute and chronic inflammation. Am J Pathol 2000; 157: 2065–79. [Google Scholar]
  13. Cuzzocrea S, McDonald MC, Mazzon E, et al. Calpain inhibitor I reduces colon injury caused by dinitrobenzene sulphonic acid in the rat. Gut 2001; 48: 478–88. [Google Scholar]
  14. Cox EA, Huttenlocher A. Regulation of integrinmediated adhesion during cell migration. Microsc Res Tech 1998; 43: 412–9. [Google Scholar]
  15. Pontremoli S, Melloni E, Damiani G, et al. Effects of a monoclonal anti-calpain antibody on responses of stimulated human neutrophils. Evidence for a role for proteolytically modified protein kinase C. J Biol Chem 1988; 263: 1915–9. [Google Scholar]
  16. Kavita U, Mizel SB. Differential sensitivity of interleukin-1 alpha and - beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem 1995; 270: 27758–65. [Google Scholar]
  17. Bellocq A, Doublier S, Suberville S, et al. Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpainspecific cleavage of Hsp 90. J Biol Chem 1999; 274: 36891–6. [Google Scholar]
  18. Knepper-Nicolai B, Savill J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 1998; 273: 30530–6. [Google Scholar]
  19. Wang KK. Calpain and caspase: can you tell the difference? Trends Neurosci 2000; 23 : 20–6. [Google Scholar]
  20. Liu X, Rainey JJ, Harriman JF, Schnellmann RG. Calpains mediate acute renal cell death: role of autolysis and translocation. Am J Physiol 2001; 281: F728–38. [Google Scholar]
  21. Szomor Z, Shimizu K, Yamamoto S, Yasuda T, Ishikawa H, Nakamura T. Externalization of calpain (calciumdependent neutral cysteine proteinase) in human arthritic cartilage. Clin Exp Rheumatol 1999; 17: 569–74. [Google Scholar]
  22. Deshpande RV, Goust JM, Chakrabarti AK, Barbosa E, Hogan EL, Banik NL. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation. J Biol Chem 1995; 270: 2497–505. [Google Scholar]
  23. Kunimatsu M, Ma XJ, Nishimura J, et al. Neutrophil chemotactic activity of N-terminal peptides from the calpain small subunit. Biochem Biophys Res Commun 1990; 169: 1242–7. [Google Scholar]
  24. Abe M, Oda N, Sato Y. Cellassociated activation of latent transforming growth factor-β by calpain. J Cell Physiol 1998; 174: 186–93. [Google Scholar]
  25. Loew D, Perrault C, Morales M, et al. Proteolysis of the exodomain of recombinant protease-activated receptors: prediction of receptor activation or inactivation by MALDI mass spectrometry. Biochemistry 2000; 39: 10812–22. [Google Scholar]
  26. Mimory T, Suganuma K, Tanami Y, et al. Autoantibodies to calpastatin (an endogenous inhibitor for calcium-dependent neutral protease, calpain) in systemic rheumatic diseases. Proc Natl Acad Sci USA 1995; 92: 7267–71. [Google Scholar]
  27. Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 2000; 81: 323–39. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.