Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 955 - 961
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011008
Publié en ligne 10 novembre 2014
  1. Bloodgood RA. From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol 2009 ; 94 : 3–52. [PubMed] [Google Scholar]
  2. Kohl L, Bastin P. The flagellum of trypanosomes. Int Rev Cytol 2005 ; 224 : 227–285. [CrossRef] [PubMed] [Google Scholar]
  3. Broadhead R, Dawe HR, Farr H, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 2006 ; 440 : 224–227. [CrossRef] [PubMed] [Google Scholar]
  4. Pazour GJ, Agrin N, Leszyk J, Witman GB. Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005 ; 170 : 103–113. [CrossRef] [PubMed] [Google Scholar]
  5. Ostrowski LE, Blackburn K, Radde KM, et al. A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 2002 ; 1 : 451–465. [CrossRef] [PubMed] [Google Scholar]
  6. Beisson J, Wright M. Basal body/centriole assembly and continuity. Curr Opin Cell Biol 2003 ; 15 : 96–104. [CrossRef] [PubMed] [Google Scholar]
  7. Deane JA, Cole DG, Seeley ES, et al. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 2001 ; 11 : 1586–1590. [CrossRef] [PubMed] [Google Scholar]
  8. Gilula NB, Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol 1972 ; 53 : 494–509. [CrossRef] [PubMed] [Google Scholar]
  9. Hu Q, Milenkovic L, Jin H, et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 2010 ; 329 : 436–439. [CrossRef] [PubMed] [Google Scholar]
  10. Rosenbaum JL, Moulder JE, Ringo DL. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol 1969 ; 41 : 600–619. [CrossRef] [PubMed] [Google Scholar]
  11. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 1993 ; 90 : 5519–5523. [CrossRef] [Google Scholar]
  12. Pigino G, Geimer S, Lanzavecchia S, et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J Cell Biol 2009 ; 187 : 135–148. [CrossRef] [PubMed] [Google Scholar]
  13. Kozminski KG, Beech PL, Rosenbaum JL. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 1995 ; 131 : 1517–1527. [CrossRef] [PubMed] [Google Scholar]
  14. Pazour GJ, Wilkerson CG, Witman GB. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 1998 ; 141 : 979–992. [CrossRef] [PubMed] [Google Scholar]
  15. Signor D, Wedaman KP, Orozco JT, et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 1999 ; 147 : 519–530. [CrossRef] [PubMed] [Google Scholar]
  16. Cole DG, Diener DR, Himelblau AL, et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 1998 ; 141 : 993–1008. [CrossRef] [PubMed] [Google Scholar]
  17. Piperno G, Mead K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA 1997 ; 94 : 4457–4462. [CrossRef] [Google Scholar]
  18. Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2012 ; 83 : S12–S22. [CrossRef] [PubMed] [Google Scholar]
  19. Orozco JT, Wedaman KP, Signor D, et al. Movement of motor, cargo along cilia. Nature 1999 ; 398 : 674. [CrossRef] [PubMed] [Google Scholar]
  20. Brown JM, Marsala C, Kosoy R, Gaertig J. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena. Mol Biol Cell 1999 ; 10 : 3081–3096. [CrossRef] [PubMed] [Google Scholar]
  21. Absalon S, Blisnick T, Kohl L, et al. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 2008 ; 19 : 929–944. [CrossRef] [PubMed] [Google Scholar]
  22. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed] [Google Scholar]
  23. Follit JA, Tuft RA, Fogarty KE, Pazour GJ. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 2006 ; 17 : 3781–3792. [CrossRef] [PubMed] [Google Scholar]
  24. Buisson J, Chenouard N, Lagache T, et al. Intraflagellar transport proteins cycle between the flagellum and its base. J Cell Sci 2013 ; 126 : 327–338. [CrossRef] [PubMed] [Google Scholar]
  25. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998 ; 95 : 829–837. [CrossRef] [PubMed] [Google Scholar]
  26. Kohl L, Robinson D, Bastin P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J 2003 ; 22 : 5336–5346. [CrossRef] [PubMed] [Google Scholar]
  27. Bhogaraju S, Cajanek L, Fort C, et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 2013 ; 341 : 1009–1012. [CrossRef] [PubMed] [Google Scholar]
  28. Marshall WF, Rosenbaum JL. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 2001 ; 155 : 405–414. [CrossRef] [PubMed] [Google Scholar]
  29. Dentler W. Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. J Cell Biol 2005 ; 170 : 649–659. [CrossRef] [PubMed] [Google Scholar]
  30. Engel BD, Ludington WB, Marshall WF. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 2009 ; 187 : 81–89. [CrossRef] [PubMed] [Google Scholar]
  31. Wren KN, Craft JM, Tritschler D, et al. A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 2013 ; 23 : 2463–2471. [CrossRef] [PubMed] [Google Scholar]
  32. Besschetnova TY, Kolpakova-Hart E, Guan Y, et al. Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 2010 ; 20 : 182–187. [CrossRef] [PubMed] [Google Scholar]
  33. Pan J, Snell WJ. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell 2005 ; 9 : 431–438. [CrossRef] [PubMed] [Google Scholar]
  34. Cao M, Meng D, Wang L, et al. Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length. Proc Natl Acad Sci USA 2013 ; 110 : 12337–12342. [CrossRef] [Google Scholar]
  35. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  36. Pazour GJ, San Agustin JT, Follit JA, et al. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 2002 ; 12 : R378–R380. [CrossRef] [PubMed] [Google Scholar]
  37. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003 ; 426 : 83–87. [CrossRef] [PubMed] [Google Scholar]
  38. Walczak-Sztulpa J, Eggenschwiler J, Osborn D, et al. Cranioectodermal dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 2010 ; 86 : 949–956. [CrossRef] [PubMed] [Google Scholar]
  39. Perrault I, Saunier S, Hanein S, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 2012 ; 90 : 864–870. [CrossRef] [PubMed] [Google Scholar]
  40. Vincensini L, Blisnick T, Bastin P. 1001 model organisms to study cilia and flagella. Biol Cell 2011 ; 103 : 109–130. [CrossRef] [PubMed] [Google Scholar]
  41. Buisson J, Bastin P. Flagellum structure and function in trypanosomes. Microbiol Monogr 2010 ; 17 : 63–86. [CrossRef] [Google Scholar]
  42. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Chennen K, Scerbo MJ, Dollfus H, et al. Syndrome de Bardet-Biedl : cils et obésité. De la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.