Open Access
Issue |
Med Sci (Paris)
Volume 41, Number 4, Avril 2025
|
|
---|---|---|
Page(s) | 367 - 373 | |
Section | Prix Nobel | |
DOI | https://doi.org/10.1051/medsci/2025060 | |
Published online | 28 April 2025 |
- Wang H, Fu T, Du Y, et al. Scientific discovery in the age of artificial intelligence. Nature 2023 ; 620 : 47–60. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li B, Gilbert S. Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine. NPJ Digit Med 2024 ; 7 : 336. [CrossRef] [PubMed] [Google Scholar]
- Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021 ; 596 : 583–9. [CrossRef] [PubMed] [Google Scholar]
- Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021 ; 373 : 871–6. [CrossRef] [PubMed] [Google Scholar]
- Schulz GE, Schirmer RH. Principles of Protein Structure. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2e édition, 2013 : 334 p. [Google Scholar]
- Watson JD, Crick FH. Molecular structure of nucleic acids ; a structure for deoxyribose nucleic acid. Nature 1953 ; 171 : 737–8. [CrossRef] [PubMed] [Google Scholar]
- Kendrew JC, Bodo G, Dintzis HM, et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958 ; 181 : 662–6. [CrossRef] [PubMed] [Google Scholar]
- Le Du M-H, Legrand P, Sirigu S, Ravy S. Introduction à la cristallographie biologique. Les Ulis : EDP sciences, 2021 : 180 p. [Google Scholar]
- Tabet JC, Rebuffat S. Prix Nobel de chimie 2002 pour la spectrométrie de masse et la résonance magnétique nucléaire. Med Sci (Paris) 2003 ; 19 : 865–72. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Neumann E, Farias Estrozi L, Effantin G, et al. La révolution de la résolution en cryo-microscopie électronique. Med Sci (Paris) 2017 ; 33 : 1111–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Schuller JM, Falk S, Fromm L, et al. Structure of the nuclear exosome captured on a maturing preribosome. Science 2018 ; 360 : 219–22. [CrossRef] [PubMed] [Google Scholar]
- Romby P, Marzi S, Westhof E. La structure atomique du ribosome en pleine lumière. Med Sci (Paris) 2009 ; 25 : 977–81. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Burley SK, Berman HM, Kleywegt GJ, et al. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods Mol Biol 2017 ; 1607 : 627–41. [CrossRef] [PubMed] [Google Scholar]
- Dobson CM. Protein folding and misfolding. Nature 2003 ; 426 : 884–90. [CrossRef] [PubMed] [Google Scholar]
- Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 1995 ; 21 : 167–95. [CrossRef] [PubMed] [Google Scholar]
- Lee J, Freddolino P, Zhang Y. Ab initio protein structure prediction. In : Rigden DJ, ed. From Protein Structure to Function with Bioinformatics : Springer-London, 2017 : 3–35. [CrossRef] [Google Scholar]
- Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. How fast-folding proteins fold. Science 2011 ; 334 : 517–20. [CrossRef] [PubMed] [Google Scholar]
- Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991 ; 253 : 164–70. [CrossRef] [PubMed] [Google Scholar]
- Krieger E, Nabuurs SB, Vriend G. Homology modeling. Methods Biochem Anal 2003 ; 44 : 509–23. [CrossRef] [PubMed] [Google Scholar]
- Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018 ; 46 : W296–W303. [CrossRef] [PubMed] [Google Scholar]
- Fiser A, Sali A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 2003 ; 374 : 461–91. [CrossRef] [PubMed] [Google Scholar]
- Jordan B. AlphaFold : un pas essentiel vers la fonction des protéines. Med Sci (Paris) 2021 ; 37 : 197–200. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Kryshtafovych A, Schwede T, Topf M, et al. Critical assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins 2019 ; 87 : 1011–20. [CrossRef] [PubMed] [Google Scholar]
- Evans R, O’Neill M, Pritzel A. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar]
- Basu S, Wallner B. DockQ: A Quality Measure for Protein-Protein Docking Models. PLoS One 2016 ; 11 : e0161879. [CrossRef] [PubMed] [Google Scholar]
- Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 ; 630 : 493–500. [CrossRef] [PubMed] [Google Scholar]
- Taly A, Verger A. Prédiction de structures biomoléculaires complexes par AlphaFold 3. Med Sci (Paris) 2024 ; 40 : 725–7. [Google Scholar]
- Jordan B. Les secrets des variants. Med Sci (Paris) 2023 ; 39 : 981–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cheng J, Novati G, Pan J, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023 ; 381 : eadg7492. [CrossRef] [PubMed] [Google Scholar]
- Kuhlman B, Dantas G, Ireton GC, et al. Design of a novel globular protein fold with atomic-level accuracy. Science 2003 ; 302 : 1364–8. [CrossRef] [PubMed] [Google Scholar]
- Leaver-Fay A, Tyka M, Lewis SM, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 2011 ; 487 : 545–74. [CrossRef] [PubMed] [Google Scholar]
- Arunachalam PS, Feng Y, Ashraf U, et al. Durable protection against the SARS-CoV-2 Omicron variant is induced by an adjuvanted subunit vaccine. Sci Transl Med 2022 ; 14 : eabq4130. [CrossRef] [PubMed] [Google Scholar]
- Torres SV, Valle MB, Mackessy SP, et al. De novo designed proteins neutralize lethal snake venom toxins. Res Sq 2024. [PubMed] [Google Scholar]
- Glogl M, Krishnakumar A, Ragotte RJ, et al. Target-conditioned diffusion generates potent TNFR superfamily antagonists and agonists. Science 2024 ; 386 : 1154–61. [CrossRef] [PubMed] [Google Scholar]
- Bennett NR, Watson JL, Ragotte RJ, et al. Atomically accurate de novo design of single-domain antibodies. bioRxiv 2024. [Google Scholar]
- Vorobieva AA, White P, Liang B, et al. De novo design of transmembrane beta barrels. Science 2021 ; 371. [Google Scholar]
- Ennist NM, Wang S, Kennedy MA, et al. De novo design of proteins housing excitonically coupled chlorophyll special pairs. Nat Chem Biol 2024 ; 20 : 906–15. [CrossRef] [PubMed] [Google Scholar]
- Wohlwend J, Corso G, Passaro S, et al. Boltz-1 Democratizing Biomolecular Interaction Modeling. bioRxiv 2024. [PubMed] [Google Scholar]
- Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022 ; 14 : 1397. [CrossRef] [PubMed] [Google Scholar]
- Benani A, Messas E. John J. Hopfield et Geoffrey E. Hinton : de Hopfield et Hinton à AlphaFold : le Prix Nobel 2024 récompense les pionniers de l’apprentissage profond. Med Sci (Paris) 2025 ; 41 : 277–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.