Open Access
Issue |
Med Sci (Paris)
Volume 41, Number 4, Avril 2025
|
|
---|---|---|
Page(s) | 355 - 366 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2025045 | |
Published online | 28 April 2025 |
- Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008 ; 321 : 1807–12. [CrossRef] [PubMed] [Google Scholar]
- Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009 ; 462 : 739–44. [CrossRef] [PubMed] [Google Scholar]
- Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010 ; 17 : 225–34. [CrossRef] [PubMed] [Google Scholar]
- Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha- ketoglutarate-dependent dioxygenases. Cancer Cell 2011 ; 19 : 17–30. [CrossRef] [PubMed] [Google Scholar]
- Chowdhury R, Yeoh KK, Tian YM, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 2011 ; 12 : 463–9. [CrossRef] [PubMed] [Google Scholar]
- Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012 ; 483 : 474–8. [CrossRef] [PubMed] [Google Scholar]
- Losman JA, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013 ; 339 : 1621–5. [CrossRef] [PubMed] [Google Scholar]
- Reitman ZJ, Jin G, Karoly ED, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A 2011 ; 108 : 3270–5. [CrossRef] [PubMed] [Google Scholar]
- Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014 ; 506 : 328–33. [CrossRef] [PubMed] [Google Scholar]
- Platt MY, Fathi AT, Borger DR, et al. Detection of Dual IDH1 and IDH2 Mutations by Targeted Next-Generation Sequencing in Acute Myeloid Leukemia and Myelodysplastic Syndromes. J Mol Diagn 2015 ; 17 : 661–8. [CrossRef] [PubMed] [Google Scholar]
- Harding JJ, Lowery MA, Shih AH, et al. Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition. Cancer Discov 2018 ; 8 : 1540–7. [CrossRef] [PubMed] [Google Scholar]
- Duchmann M, Micol JB, Duployez N, et al. Prognostic significance of concurrent gene mutations in intensively treated patients with IDH- mutated AML: an ALFA study. Blood 2021 ; 137 : 2827–37. [CrossRef] [PubMed] [Google Scholar]
- Zarnegar-Lumley S, Alonzo TA, Gerbing RB, et al. Characteristics and prognostic impact of IDH mutations in AML: a COG, SWOG, and ECOG analysis. Blood Adv 2023 ; 7 : 5941–53. [CrossRef] [PubMed] [Google Scholar]
- Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 2010 ; 207 : 339–44. [CrossRef] [PubMed] [Google Scholar]
- Gu Y, Yang R, Yang Y, et al. IDH1 mutation contributes to myeloid dysplasia in mice by disturbing heme biosynthesis and erythropoiesis. Blood 2021 ; 137 : 945–58. [CrossRef] [PubMed] [Google Scholar]
- Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010 ; 18 : 553–67. [CrossRef] [PubMed] [Google Scholar]
- Mahfoudhi E, Secardin L, Scourzic L, et al. Propriétés et rôles biologiques des protéines TET au cours du développement et de l’hématopoïèse. Med Sci (Paris) 2015 ; 31 : 268–74. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Mol Cell 2021 ; 81 : 922–39 e9. [CrossRef] [PubMed] [Google Scholar]
- Sasaki M, Knobbe CB, Munger JC, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012 ; 488 : 656–9. [CrossRef] [PubMed] [Google Scholar]
- Chen JY, Lai YS, Tsai HJ, et al. The oncometabolite R-2-hydroxyglutarate activates NF-kappaB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells. Sci Rep 2016 ; 6 : 32428. [CrossRef] [PubMed] [Google Scholar]
- Bottcher M, Renner K, Berger R, et al. D-2-hydroxyglutarate interferes with HIF-1alpha stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. Oncoimmunology 2018 ; 7 : e1445454. [CrossRef] [PubMed] [Google Scholar]
- Wang TX, Liang JY, Zhang C, et al. The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis. Cell Death Dis 2019 ; 10 : 755. [CrossRef] [PubMed] [Google Scholar]
- Sulkowski PL, Corso CD, Robinson ND, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 2017 ; 9 : eaal2463. [CrossRef] [PubMed] [Google Scholar]
- Callens C, Moura IC, Hermine O. Les ROS : une nouvelle cible thérapeutique dans les leucémies ? Med Sci (Paris) 2010 ; 26 : 1033–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Kattih B, Shirvani A, Klement P, et al. IDH1/2 mutations in acute myeloid leukemia patients and risk of coronary artery disease and cardiac dysfunction-a retrospective propensity score analysis. Leukemia 2021 ; 35 : 1301–16. [CrossRef] [PubMed] [Google Scholar]
- Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med 2015 ; 21 : 178–84. [CrossRef] [PubMed] [Google Scholar]
- Pratz KW, Jonas BA, Pullarkat V, et al. Long-term follow-up of VIALE-A: Venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia. Am J Hematol 2024 ; 99 : 615–24. [CrossRef] [PubMed] [Google Scholar]
- Pollyea DA, Stevens BM, Jones CL, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med 2018 ; 24 : 1859–66. [CrossRef] [PubMed] [Google Scholar]
- Stuani L, Sabatier M, Saland E, et al. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. J Exp Med 2021 ; 218 : e20200924. [CrossRef] [PubMed] [Google Scholar]
- DiNardo CD, Stein EM, de Botton S, et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med 2018 ; 378 : 2386–98. [CrossRef] [PubMed] [Google Scholar]
- Roboz GJ, DiNardo CD, Stein EM, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood 2020 ; 135 : 463–71. [CrossRef] [PubMed] [Google Scholar]
- Montesinos P, Recher C, Vives S, et al. Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. N Engl J Med 2022 ; 386 : 1519–31. [CrossRef] [PubMed] [Google Scholar]
- Lachowiez CA, Loghavi S, Zeng Z, et al. A Phase Ib/II Study of Ivosidenib with Venetoclax +/- Azacitidine in IDH1-Mutated Myeloid Malignancies. Blood Cancer Discov 2023 ; 4 : 276–93. [CrossRef] [PubMed] [Google Scholar]
- Stein EM, DiNardo CD, Fathi AT, et al. Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study. Blood 2021 ; 137 : 1792–803. [CrossRef] [PubMed] [Google Scholar]
- Stein EM, DiNardo CD, Fathi AT, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 2019 ; 133 : 676–87. [CrossRef] [PubMed] [Google Scholar]
- Pollyea DA, Tallman MS, de Botton S, et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia 2019 ; 33 : 2575–84. [CrossRef] [PubMed] [Google Scholar]
- de Botton S, Montesinos P, Schuh AC, et al. Enasidenib vs conventional care in older patients with late-stage mutant-IDH2 relapsed/refractory AML: a randomized phase 3 trial. Blood 2023 ; 141 : 156–67. [CrossRef] [PubMed] [Google Scholar]
- DiNardo CD, Schuh AC, Stein EM, et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol 2021 ; 22 : 1597–608. [CrossRef] [PubMed] [Google Scholar]
- Venugopal S, Takahashi K, Daver N, et al. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer J 2022 ; 12 : 10. [CrossRef] [PubMed] [Google Scholar]
- Wang F, Morita K, DiNardo CD, et al. Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nat Commun 2021 ; 12 : 2607. [CrossRef] [PubMed] [Google Scholar]
- Bellina M. Cellules souches leucémiques : cibler leur quiescence afin d’optimiser les thérapies. Med Sci (Paris) 2019 ; 35 : 705–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gruber E, So J, Lewis AC, et al. Inhibition of mutant IDH1 promotes cycling of acute myeloid leukemia stem cells. Cell Rep 2022 ; 40 : 111182. [CrossRef] [PubMed] [Google Scholar]
- Choe S, Wang H, DiNardo CD, et al. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. Blood Adv 2020 ; 4 : 1894–905. [CrossRef] [PubMed] [Google Scholar]
- Quek L, David MD, Kennedy A, et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat Med 2018 ; 24 : 1167–77. [CrossRef] [PubMed] [Google Scholar]
- Landberg N, Kohnke T, Feng Y, et al. IDH1-Mutant Preleukemic Hematopoietic Stem Cells Can Be Eliminated by Inhibition of Oxidative Phosphorylation. Blood Cancer Discov 2024 : OF1–OF18. [PubMed] [Google Scholar]
- Garciaz S, Hospital MA, Collette Y, Vey N. Venetoclax Resistance in Acute Myeloid Leukemia. Cancers (Basel) 2024 ; 16 : 1091. [CrossRef] [PubMed] [Google Scholar]
- DiNardo CD, Propert KJ, Loren AW, et al. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood 2013 ; 121 : 4917–24. [CrossRef] [PubMed] [Google Scholar]
- Brunner AM, Neuberg DS, Wander SA, et al. Isocitrate dehydrogenase 1 and 2 mutations, 2-hydroxyglutarate levels, and response to standard chemotherapy for patients with newly diagnosed acute myeloid leukemia. Cancer 2019 ; 125 : 541–9. [CrossRef] [PubMed] [Google Scholar]
- Ravindra N, Dillon LW, Gui G, et al. Persistent IDH mutations are not associated with increased relapse or death in patients with IDH-mutated acute myeloid leukemia undergoing allogeneic hematopoietic cell transplant with post-transplant cyclophosphamide. Bone Marrow Transplant 2024 ; 59 : 428–30. [CrossRef] [PubMed] [Google Scholar]
- Emadi A, Jun SA, Tsukamoto T, et al. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol 2014 ; 42 : 247–51. [CrossRef] [PubMed] [Google Scholar]
- Bassal MA, Samaraweera SE, Lim K, et al. Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1- mutant acute myeloid leukaemia. Nat Commun 2022 ; 13 : 2614. [CrossRef] [PubMed] [Google Scholar]
- Marmouset V, Decroocq J, Garciaz S, et al. Therapy-related Myeloid Neoplasms Following PARP Inhibitors: Real-life Experience. Clin Cancer Res 2022 ; 28 : 5211–20. [CrossRef] [PubMed] [Google Scholar]
- Boutzen H, Saland E, Larrue C, et al. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J Exp Med 2016 ; 213 : 483–97. [CrossRef] [PubMed] [Google Scholar]
- Kim Y, Jeung HK, Cheong JW, et al. All-Trans Retinoic Acid Synergizes with Enasidenib to Induce Differentiation of IDH2-Mutant Acute Myeloid Leukemia Cells. Yonsei Med J 2020 ; 61 : 762–73. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.