Open Access
Issue
Med Sci (Paris)
Volume 41, Number 3, Mars 2025
Page(s) 239 - 245
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025022
Published online 21 March 2025
  1. Céline L. Voyage au bout de la nuit. Paris : Denoël et Steele, 1932. [Google Scholar]
  2. Stépanoff C. L’animal et la mort. Paris : La Découverte, 2021. [Google Scholar]
  3. La Fontaine J. Fable 9, Livre VII. Paris : LGF 2002, 1678. [Google Scholar]
  4. Chen YY, Areti A, Yoshor D, Foster BL. Perception and memory reinstatement engage overlapping face-selective regions within human ventral temporal Cortex. J Neurosci 2024 ; 44. [Google Scholar]
  5. Seshamani S, Blazejewska AI, McKown S, et al. Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis. Hum Brain Mapp 2016 ; 37 : 4158–78. [CrossRef] [PubMed] [Google Scholar]
  6. Mantini D, Gerits A, Nelissen K, et al. Default mode of brain function in monkeys. J Neurosci 2011 ; 31 : 12954–62. [Google Scholar]
  7. Mandino F, Vrooman RM, Foo HE, et al. A triple-network organization for the mouse brain. Mol Psychiatry 2022 ; 27 : 865–72. [PubMed] [Google Scholar]
  8. Sierakowiak A, Monnot C, Aski SN, et al. Default mode network, motor network, dorsal and ventral basal ganglia networks in the rat brain : comparison to human networks using resting state-fMRI. PLoS One 2015 ; 10 : e0120345. [Google Scholar]
  9. Perovnik M, Rus T, Schindlbeck KA, Eidelberg D. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol 2023 ; 19 : 73–90. [Google Scholar]
  10. Das A, de Los Angeles C, Menon V. Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during resting-state and cognition. Neuroimage 2022 ; 250 : 118927. [Google Scholar]
  11. Andelman F, Hoofien D, Goldberg I, et al. Bilateral hippocampal lesion and a selective impairment of the ability for mental time travel. Neurocase 2010 ; 16 : 426–35. [Google Scholar]
  12. Ciaramelli E, Anelli F, Frassinetti F. An asymmetry in past and future mental time travel following vmPFC damage. Soc Cogn Affect Neurosci 2021 ; 16 : 315–25. [Google Scholar]
  13. Gauthier B, Pestke K, van Wassenhove V. Building the arrow of time... over time : a sequence of brain activity mapping imagined events in time and space. Cereb Cortex 2019 ; 29 : 4398–414. [Google Scholar]
  14. Schurr R, Nitzan M, Eliahou R, et al. Temporal dissociation of neocortical and hippocampal contributions to mental time travel using intracranial recordings in humans. Front Comput Neurosci 2018 ; 12 : 11. [CrossRef] [PubMed] [Google Scholar]
  15. Karahanoglu FI, Van De Ville D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat Commun 2015 ; 6 : 7751. [PubMed] [Google Scholar]
  16. Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in time. Proc Natl Acad Sci USA 2017 ; 114 : 12827–32. [Google Scholar]
  17. Descroix E, Charavel M, Swiatkowski W, Graff C. Spontaneous eye-blinking rate from pre-term to six-months. Cogent Psychology 2015 ; 2 : 1091062. [Google Scholar]
  18. Descroix E, Swiatkowski W, Graff C. Blinking while speaking and talking, hearing and listening. Communication and individual underlying process. J Nonverbal Behav 2022 ; 1–26. [Google Scholar]
  19. Duranton C, Jeannin S, Bedossa T, Gaunet F. La mémoire autobiographique/épisodique : le chien, un modèle d’étude ? Med Sci (Paris) 2017 ; 33 : 1089–95. [Google Scholar]
  20. Laplane D, Dubois B. Auto-Activation deficit : a basal ganglia related syndrome. Mov Disord 2001 ; 16 : 810–4. [PubMed] [Google Scholar]
  21. Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson’s disease : clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 2015 ; 14 : 518–31. [Google Scholar]
  22. Charland-Verville V, Thonnard M, Dehon H, et al. La phénoménologie de souvenirs d’expériences de mort imminente peut-elle être comparée à celle de souvenirs d’événements réels et imaginés ? Med Sci (Paris) 2014 ; 30 : 246–8. [Google Scholar]
  23. Vicente R, Rizzuto M, Sarica C, et al. Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain. Front Aging Neurosci 2022 ; 14 : 813531. [CrossRef] [PubMed] [Google Scholar]
  24. Blanchin M. Quand vous pensiez que j’étais mort, mon quotidien dans le coma. Paris : Futuropolis, 2015. [Google Scholar]
  25. Bauby JD. Le scaphandre et le papillon. Paris : Robert Laffont, 1997. [Google Scholar]
  26. Brandmeyer T, Delorme A. Meditation and the Wandering Mind : A Theoretical framework of underlying neurocognitive mechanisms. Perspect Psychol Sci 2021 ; 16 : 39–66. [Google Scholar]
  27. Hasenkamp W, Barsalou LW. Effects of meditation experience on functional connectivity of distributed brain networks. Front Hum Neurosci 2012 ; 6 : 38. [CrossRef] [PubMed] [Google Scholar]
  28. Belardi A, Chaieb L, Rey-Mermet A, et al. On the relationship between mind wandering and mindfulness. Sci Rep 2022 ; 12 : 7755. [Google Scholar]
  29. Taren AA, Gianaros PJ, Greco CM, et al. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity : a randomized controlled trial. Soc Cogn Affect Neurosci 2015 ; 10 : 1758–68. [Google Scholar]
  30. Cooper AC, Ventura B, Northoff G. Beyond the veil of duality—topographic reorganization model of meditation. Neurosci Consciousness 2022 ; 1–22. [Google Scholar]
  31. Baud S. L’ingestion d’ayahuasca parmi les populations indigènes et métisses de l’actuel Pérou. Une définition du chamanisme amazonien. Ethnographiques Org 2008 ; 15. [Google Scholar]
  32. Studerus E, Kometer M, Hasler F, FX V. Acute, subacute and long-term subjective effects of psilocybin in healthy humans : a pooled analysis of experimental studies. J Psychopharmacol 2011 ; 25 : 1434–52. [CrossRef] [PubMed] [Google Scholar]
  33. Studerus E, Gamma A, Vollenweider FX. Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS One 2010 ; 5 : e12412. [Google Scholar]
  34. Dittrich A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry 1998 ; 31 : 80–4. [Google Scholar]
  35. Milliere R. Looking for the Self : Phenomenology, neurophysiology and philosophical significance of drug-induced ego dissolution. Front Hum Neurosci 2017 ; 11 : 245. [CrossRef] [PubMed] [Google Scholar]
  36. Milliere R, Carhart-Harris RL, Roseman L, et al. Psychedelics, Meditation, and Self-Consciousness. Front Psychol 2018 ; 9 : 1475. [Google Scholar]
  37. Nour MM, RL CH. Psychedelics and the science of self-experience. Br J Psychiatry 2017 ; 210 : 177–79. [Google Scholar]
  38. Luppi AI, Craig MM, Pappas I, et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat Commun 2019 ; 10 : 4616. [PubMed] [Google Scholar]
  39. Siegel JS, Subramanian S, Perry D, et al. Psilocybin desynchronizes the human brain. Nature 2024 ; 632 : 131–8. [Google Scholar]
  40. Yeshurun Y, Nguyen M, Hasson U. The default mode network : where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 2021 ; 22 : 181–92. [Google Scholar]
  41. Madsen MK, Stenbaek DS, Arvidsson A, et al. Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur Neuropsychopharmacol 2021 ; 50 : 121–32. [Google Scholar]
  42. Lai C, Tanaka S, Harris TD, Lee AK. Volitional activation of remote place representations with a hippocampal brain–machine interface. Science 2023 ; 382 : 566–73. [Google Scholar]
  43. Lampiden A, Chan SC, Banino A. Towards mental time travel : a hierarchical memory for reinforcement learning agents. Arxivorg/abs/210514039 2021. [Google Scholar]
  44. Roseboom W, Fountas Z, Nikiforou K, et al. Activity in perceptual classification networks as a basis for human subjective time perception. Nat Commun 2019 ; 10 : 267. [PubMed] [Google Scholar]
  45. Dehaene S. Les Neurones de la lecture. Paris : Odile Jacob, 2007. [Google Scholar]
  46. Sasabayashi D, Takahashi T, Takayanagi Y, et al. Resting state hyperconnectivity of the default mode network in schizophrenia and clinical high-risk state for psychosis. Cerebral Cortex 2023 ; 33 : 8456–64. [Google Scholar]
  47. Yan CG, Chen X, Li L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc Natl Acad Sci USA 2019 ; 116 : 9078–83. [Google Scholar]
  48. Deco G, Jirsa V, McIntosh AR. Resting brains never rest : computational insights into potential cognitive architectures. Trends Neurosci 2013 ; 36 : 268–74. [CrossRef] [PubMed] [Google Scholar]
  49. Dick P. Do androids dream of electric sheep? New York : Doubleday, 1968. [Google Scholar]
  50. Girn M, Mills C, Roseman L, et al. Updating the dynamic framework of thought : Creativity and psychedelics. Neuroimage 2020 ; 213 : 116726. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.