Open Access
Issue |
Med Sci (Paris)
Volume 41, Number 3, Mars 2025
|
|
---|---|---|
Page(s) | 246 - 252 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2025023 | |
Published online | 21 March 2025 |
- Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023 ; 78 : 1966. [Google Scholar]
- Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005 ; 115 : 1343–51. [Google Scholar]
- Ferré P, Foufelle F. Hepatic steatosis : A role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010 ; 12 Suppl 2 : 83–92. [Google Scholar]
- Abdul-Wahed A, Guilmeau S, Postic C. Sweet sixteenth for chrebp : established roles and future goals. Cell Metab 2017 ; 26 : 324–41. [Google Scholar]
- Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr 2003 ; 77 : 43–50. [PubMed] [Google Scholar]
- Robichon C, Girard J, Postic C. L’hyperactivité de la lipogenèse peut- elle conduire à la stéatose hépatique ? - Implication du facteur de transcription ChREBP. Med Sci (Paris) 2008 ; 24 : 841–6. [Google Scholar]
- Brown MS, Goldstein JL. Selective versus total insulin resistance : A pathogenic paradox. Cell Metab 2008 ; 7 : 95–6. [Google Scholar]
- Shimomura I, Matsuda M, Hammer RE, et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000 ; 6 : 77–86. [Google Scholar]
- Titchenell PM, Quinn WJ, Lu M, et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab 2016 ; 23 : 1154–66. [Google Scholar]
- Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance : lessons from genetically engineered mice. J Clin Invest 2008 ; 118 : 829–38. [Google Scholar]
- An J, Muoio DM, Shiota M, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 2004 ; 10 : 268–74. [Google Scholar]
- Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006 ; 55 : 2159–70. [Google Scholar]
- Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 2006 ; 116 : 817–24. [Google Scholar]
- Monetti M, Levin MC, Watt MJ, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 2007 ; 6 : 69–78. [Google Scholar]
- Benhamed F, Denechaud PD, Lemoine M, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012 ; 122 : 2176–94. [Google Scholar]
- Abdul-Wahed A, Gautier-Stein A, Casteras S, et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab 2014 ; 3 : 531–43. [PubMed] [Google Scholar]
- Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, et al. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci 2018 ; 19. [Google Scholar]
- Brunt EM. Nonalcoholic steatohepatitis : Definition and pathology. Semin Liver Dis 2001 ; 21 : 3–16. [Google Scholar]
- Gjorgjieva M, Mithieux G, Rajas F. Hepatic stress associated with pathologies characterized by disturbed glucose production. Cell Stress 2019 ; 3 : 86–99. [Google Scholar]
- Soty M, Gautier-Stein A, Rajas F, Mithieux G. Gut-brain glucose signaling in energy homeostasis. Cell Metab 2017 ; 25 : 1231–42. [CrossRef] [PubMed] [Google Scholar]
- Mutel E, Gautier-Stein A, Abdul-Wahed A, et al. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice : induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 2011 ; 60 : 3121–31. [Google Scholar]
- Salganik SV, Weinstein DA, Shupe TD, et al. A detailed characterization of the adult mouse model of glycogen storage disease Ia. Lab Investig J Tech Methods Pathol 2009 ; 89 : 1032–42. [Google Scholar]
- Chou J, Zingone A, Pan CJ. Adenovirus-mediated gene therapy in a mouse model of glycogen storage disease type 1a. Eur J Pediatr 2002 ; 161 : S56–61. [Google Scholar]
- Mithieux G, Misery P, Magnan C, et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2005 ; 2 : 321–9. [CrossRef] [PubMed] [Google Scholar]
- De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014 ; 156 : 84–96. [CrossRef] [PubMed] [Google Scholar]
- Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 2008 ; 8 : 201–11. [CrossRef] [PubMed] [Google Scholar]
- Penhoat A, Mutel E, Amigo-Correig M, et al. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol Behav 2011 ; 105 : 89–93. [Google Scholar]
- Berthoud HR, Blackshaw LA, Brookes SJH, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. J Eur Gastrointest Motil Soc 2004 ; 16 (suppl 1) : 28–33. [Google Scholar]
- Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest 2007 ; 117 : 13. [Google Scholar]
- Vily-Petit J, Soty-Roca M, Silva M, et al. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 2020 ; 69 : 2193–202. [CrossRef] [PubMed] [Google Scholar]
- Vily-Petit J, Soty-Roca M, Silva M, et al. Antiobesity effects of intestinal gluconeogenesis are mediated by the brown adipose tissue sympathetic nervous system. Obes Silver Spring Md 2024 ; 32 : 710–22. [Google Scholar]
- Smith RE, Horwitz BA. Brown fat and thermogenesis. Physiol Rev 1969 ; 49 : 330–425. [Google Scholar]
- Carrière A, Jeanson Y, Cousin B, et al. Le recrutement et l’activation d’adipocytes bruns et/ou BRITE : une perspective réelle pour le traitement des maladies métaboliques ? Med Sci (Paris) 2013 ; 29 : 729–35. [Google Scholar]
- Brychta R, Chen K. Cold-induced thermogenesis in humans. Eur J Clin Nutr 2017 ; 71 : 345–52. [Google Scholar]
- Cannon B, Nedergaard J. Brown adipose tissue : function and physiological significance. Physiol Rev 2004 ; 84 : 277–359. [Google Scholar]
- Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994 ; 372 : 425–32. [CrossRef] [PubMed] [Google Scholar]
- Achari AE, Jain SK. Adiponectin, a Therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017 ; 18 : 1321. [Google Scholar]
- Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999 ; 257 : 79–83. [Google Scholar]
- Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab 2010 ; 12 : 365–83. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.