Open Access
Numéro |
Med Sci (Paris)
Volume 41, Numéro 3, Mars 2025
|
|
---|---|---|
Page(s) | 246 - 252 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2025023 | |
Publié en ligne | 21 mars 2025 |
- Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023 ; 78 : 1966. [Google Scholar]
- Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005 ; 115 : 1343–51. [Google Scholar]
- Ferré P, Foufelle F. Hepatic steatosis : A role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010 ; 12 Suppl 2 : 83–92. [Google Scholar]
- Abdul-Wahed A, Guilmeau S, Postic C. Sweet sixteenth for chrebp : established roles and future goals. Cell Metab 2017 ; 26 : 324–41. [Google Scholar]
- Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr 2003 ; 77 : 43–50. [PubMed] [Google Scholar]
- Robichon C, Girard J, Postic C. L’hyperactivité de la lipogenèse peut- elle conduire à la stéatose hépatique ? - Implication du facteur de transcription ChREBP. Med Sci (Paris) 2008 ; 24 : 841–6. [Google Scholar]
- Brown MS, Goldstein JL. Selective versus total insulin resistance : A pathogenic paradox. Cell Metab 2008 ; 7 : 95–6. [Google Scholar]
- Shimomura I, Matsuda M, Hammer RE, et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000 ; 6 : 77–86. [Google Scholar]
- Titchenell PM, Quinn WJ, Lu M, et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab 2016 ; 23 : 1154–66. [Google Scholar]
- Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance : lessons from genetically engineered mice. J Clin Invest 2008 ; 118 : 829–38. [Google Scholar]
- An J, Muoio DM, Shiota M, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 2004 ; 10 : 268–74. [Google Scholar]
- Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006 ; 55 : 2159–70. [Google Scholar]
- Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 2006 ; 116 : 817–24. [Google Scholar]
- Monetti M, Levin MC, Watt MJ, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 2007 ; 6 : 69–78. [Google Scholar]
- Benhamed F, Denechaud PD, Lemoine M, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012 ; 122 : 2176–94. [Google Scholar]
- Abdul-Wahed A, Gautier-Stein A, Casteras S, et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab 2014 ; 3 : 531–43. [PubMed] [Google Scholar]
- Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, et al. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci 2018 ; 19. [Google Scholar]
- Brunt EM. Nonalcoholic steatohepatitis : Definition and pathology. Semin Liver Dis 2001 ; 21 : 3–16. [Google Scholar]
- Gjorgjieva M, Mithieux G, Rajas F. Hepatic stress associated with pathologies characterized by disturbed glucose production. Cell Stress 2019 ; 3 : 86–99. [Google Scholar]
- Soty M, Gautier-Stein A, Rajas F, Mithieux G. Gut-brain glucose signaling in energy homeostasis. Cell Metab 2017 ; 25 : 1231–42. [CrossRef] [PubMed] [Google Scholar]
- Mutel E, Gautier-Stein A, Abdul-Wahed A, et al. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice : induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 2011 ; 60 : 3121–31. [Google Scholar]
- Salganik SV, Weinstein DA, Shupe TD, et al. A detailed characterization of the adult mouse model of glycogen storage disease Ia. Lab Investig J Tech Methods Pathol 2009 ; 89 : 1032–42. [Google Scholar]
- Chou J, Zingone A, Pan CJ. Adenovirus-mediated gene therapy in a mouse model of glycogen storage disease type 1a. Eur J Pediatr 2002 ; 161 : S56–61. [Google Scholar]
- Mithieux G, Misery P, Magnan C, et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2005 ; 2 : 321–9. [CrossRef] [PubMed] [Google Scholar]
- De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014 ; 156 : 84–96. [CrossRef] [PubMed] [Google Scholar]
- Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 2008 ; 8 : 201–11. [CrossRef] [PubMed] [Google Scholar]
- Penhoat A, Mutel E, Amigo-Correig M, et al. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol Behav 2011 ; 105 : 89–93. [Google Scholar]
- Berthoud HR, Blackshaw LA, Brookes SJH, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. J Eur Gastrointest Motil Soc 2004 ; 16 (suppl 1) : 28–33. [Google Scholar]
- Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest 2007 ; 117 : 13. [Google Scholar]
- Vily-Petit J, Soty-Roca M, Silva M, et al. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 2020 ; 69 : 2193–202. [CrossRef] [PubMed] [Google Scholar]
- Vily-Petit J, Soty-Roca M, Silva M, et al. Antiobesity effects of intestinal gluconeogenesis are mediated by the brown adipose tissue sympathetic nervous system. Obes Silver Spring Md 2024 ; 32 : 710–22. [Google Scholar]
- Smith RE, Horwitz BA. Brown fat and thermogenesis. Physiol Rev 1969 ; 49 : 330–425. [Google Scholar]
- Carrière A, Jeanson Y, Cousin B, et al. Le recrutement et l’activation d’adipocytes bruns et/ou BRITE : une perspective réelle pour le traitement des maladies métaboliques ? Med Sci (Paris) 2013 ; 29 : 729–35. [Google Scholar]
- Brychta R, Chen K. Cold-induced thermogenesis in humans. Eur J Clin Nutr 2017 ; 71 : 345–52. [Google Scholar]
- Cannon B, Nedergaard J. Brown adipose tissue : function and physiological significance. Physiol Rev 2004 ; 84 : 277–359. [Google Scholar]
- Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994 ; 372 : 425–32. [CrossRef] [PubMed] [Google Scholar]
- Achari AE, Jain SK. Adiponectin, a Therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017 ; 18 : 1321. [Google Scholar]
- Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999 ; 257 : 79–83. [Google Scholar]
- Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab 2010 ; 12 : 365–83. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.