Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 3, Mars 2025
Page(s) 239 - 245
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025022
Publié en ligne 21 mars 2025
  1. Céline L. Voyage au bout de la nuit. Paris : Denoël et Steele, 1932. [Google Scholar]
  2. Stépanoff C. L’animal et la mort. Paris : La Découverte, 2021. [Google Scholar]
  3. La Fontaine J. Fable 9, Livre VII. Paris : LGF 2002, 1678. [Google Scholar]
  4. Chen YY, Areti A, Yoshor D, Foster BL. Perception and memory reinstatement engage overlapping face-selective regions within human ventral temporal Cortex. J Neurosci 2024 ; 44. [Google Scholar]
  5. Seshamani S, Blazejewska AI, McKown S, et al. Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis. Hum Brain Mapp 2016 ; 37 : 4158–78. [CrossRef] [PubMed] [Google Scholar]
  6. Mantini D, Gerits A, Nelissen K, et al. Default mode of brain function in monkeys. J Neurosci 2011 ; 31 : 12954–62. [Google Scholar]
  7. Mandino F, Vrooman RM, Foo HE, et al. A triple-network organization for the mouse brain. Mol Psychiatry 2022 ; 27 : 865–72. [PubMed] [Google Scholar]
  8. Sierakowiak A, Monnot C, Aski SN, et al. Default mode network, motor network, dorsal and ventral basal ganglia networks in the rat brain : comparison to human networks using resting state-fMRI. PLoS One 2015 ; 10 : e0120345. [Google Scholar]
  9. Perovnik M, Rus T, Schindlbeck KA, Eidelberg D. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol 2023 ; 19 : 73–90. [Google Scholar]
  10. Das A, de Los Angeles C, Menon V. Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during resting-state and cognition. Neuroimage 2022 ; 250 : 118927. [Google Scholar]
  11. Andelman F, Hoofien D, Goldberg I, et al. Bilateral hippocampal lesion and a selective impairment of the ability for mental time travel. Neurocase 2010 ; 16 : 426–35. [Google Scholar]
  12. Ciaramelli E, Anelli F, Frassinetti F. An asymmetry in past and future mental time travel following vmPFC damage. Soc Cogn Affect Neurosci 2021 ; 16 : 315–25. [Google Scholar]
  13. Gauthier B, Pestke K, van Wassenhove V. Building the arrow of time... over time : a sequence of brain activity mapping imagined events in time and space. Cereb Cortex 2019 ; 29 : 4398–414. [Google Scholar]
  14. Schurr R, Nitzan M, Eliahou R, et al. Temporal dissociation of neocortical and hippocampal contributions to mental time travel using intracranial recordings in humans. Front Comput Neurosci 2018 ; 12 : 11. [CrossRef] [PubMed] [Google Scholar]
  15. Karahanoglu FI, Van De Ville D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat Commun 2015 ; 6 : 7751. [PubMed] [Google Scholar]
  16. Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in time. Proc Natl Acad Sci USA 2017 ; 114 : 12827–32. [Google Scholar]
  17. Descroix E, Charavel M, Swiatkowski W, Graff C. Spontaneous eye-blinking rate from pre-term to six-months. Cogent Psychology 2015 ; 2 : 1091062. [Google Scholar]
  18. Descroix E, Swiatkowski W, Graff C. Blinking while speaking and talking, hearing and listening. Communication and individual underlying process. J Nonverbal Behav 2022 ; 1–26. [Google Scholar]
  19. Duranton C, Jeannin S, Bedossa T, Gaunet F. La mémoire autobiographique/épisodique : le chien, un modèle d’étude ? Med Sci (Paris) 2017 ; 33 : 1089–95. [Google Scholar]
  20. Laplane D, Dubois B. Auto-Activation deficit : a basal ganglia related syndrome. Mov Disord 2001 ; 16 : 810–4. [PubMed] [Google Scholar]
  21. Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson’s disease : clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 2015 ; 14 : 518–31. [Google Scholar]
  22. Charland-Verville V, Thonnard M, Dehon H, et al. La phénoménologie de souvenirs d’expériences de mort imminente peut-elle être comparée à celle de souvenirs d’événements réels et imaginés ? Med Sci (Paris) 2014 ; 30 : 246–8. [Google Scholar]
  23. Vicente R, Rizzuto M, Sarica C, et al. Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain. Front Aging Neurosci 2022 ; 14 : 813531. [CrossRef] [PubMed] [Google Scholar]
  24. Blanchin M. Quand vous pensiez que j’étais mort, mon quotidien dans le coma. Paris : Futuropolis, 2015. [Google Scholar]
  25. Bauby JD. Le scaphandre et le papillon. Paris : Robert Laffont, 1997. [Google Scholar]
  26. Brandmeyer T, Delorme A. Meditation and the Wandering Mind : A Theoretical framework of underlying neurocognitive mechanisms. Perspect Psychol Sci 2021 ; 16 : 39–66. [Google Scholar]
  27. Hasenkamp W, Barsalou LW. Effects of meditation experience on functional connectivity of distributed brain networks. Front Hum Neurosci 2012 ; 6 : 38. [CrossRef] [PubMed] [Google Scholar]
  28. Belardi A, Chaieb L, Rey-Mermet A, et al. On the relationship between mind wandering and mindfulness. Sci Rep 2022 ; 12 : 7755. [Google Scholar]
  29. Taren AA, Gianaros PJ, Greco CM, et al. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity : a randomized controlled trial. Soc Cogn Affect Neurosci 2015 ; 10 : 1758–68. [Google Scholar]
  30. Cooper AC, Ventura B, Northoff G. Beyond the veil of duality—topographic reorganization model of meditation. Neurosci Consciousness 2022 ; 1–22. [Google Scholar]
  31. Baud S. L’ingestion d’ayahuasca parmi les populations indigènes et métisses de l’actuel Pérou. Une définition du chamanisme amazonien. Ethnographiques Org 2008 ; 15. [Google Scholar]
  32. Studerus E, Kometer M, Hasler F, FX V. Acute, subacute and long-term subjective effects of psilocybin in healthy humans : a pooled analysis of experimental studies. J Psychopharmacol 2011 ; 25 : 1434–52. [CrossRef] [PubMed] [Google Scholar]
  33. Studerus E, Gamma A, Vollenweider FX. Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS One 2010 ; 5 : e12412. [Google Scholar]
  34. Dittrich A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry 1998 ; 31 : 80–4. [Google Scholar]
  35. Milliere R. Looking for the Self : Phenomenology, neurophysiology and philosophical significance of drug-induced ego dissolution. Front Hum Neurosci 2017 ; 11 : 245. [CrossRef] [PubMed] [Google Scholar]
  36. Milliere R, Carhart-Harris RL, Roseman L, et al. Psychedelics, Meditation, and Self-Consciousness. Front Psychol 2018 ; 9 : 1475. [Google Scholar]
  37. Nour MM, RL CH. Psychedelics and the science of self-experience. Br J Psychiatry 2017 ; 210 : 177–79. [Google Scholar]
  38. Luppi AI, Craig MM, Pappas I, et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat Commun 2019 ; 10 : 4616. [PubMed] [Google Scholar]
  39. Siegel JS, Subramanian S, Perry D, et al. Psilocybin desynchronizes the human brain. Nature 2024 ; 632 : 131–8. [Google Scholar]
  40. Yeshurun Y, Nguyen M, Hasson U. The default mode network : where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 2021 ; 22 : 181–92. [Google Scholar]
  41. Madsen MK, Stenbaek DS, Arvidsson A, et al. Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur Neuropsychopharmacol 2021 ; 50 : 121–32. [Google Scholar]
  42. Lai C, Tanaka S, Harris TD, Lee AK. Volitional activation of remote place representations with a hippocampal brain–machine interface. Science 2023 ; 382 : 566–73. [Google Scholar]
  43. Lampiden A, Chan SC, Banino A. Towards mental time travel : a hierarchical memory for reinforcement learning agents. Arxivorg/abs/210514039 2021. [Google Scholar]
  44. Roseboom W, Fountas Z, Nikiforou K, et al. Activity in perceptual classification networks as a basis for human subjective time perception. Nat Commun 2019 ; 10 : 267. [PubMed] [Google Scholar]
  45. Dehaene S. Les Neurones de la lecture. Paris : Odile Jacob, 2007. [Google Scholar]
  46. Sasabayashi D, Takahashi T, Takayanagi Y, et al. Resting state hyperconnectivity of the default mode network in schizophrenia and clinical high-risk state for psychosis. Cerebral Cortex 2023 ; 33 : 8456–64. [Google Scholar]
  47. Yan CG, Chen X, Li L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc Natl Acad Sci USA 2019 ; 116 : 9078–83. [Google Scholar]
  48. Deco G, Jirsa V, McIntosh AR. Resting brains never rest : computational insights into potential cognitive architectures. Trends Neurosci 2013 ; 36 : 268–74. [CrossRef] [PubMed] [Google Scholar]
  49. Dick P. Do androids dream of electric sheep? New York : Doubleday, 1968. [Google Scholar]
  50. Girn M, Mills C, Roseman L, et al. Updating the dynamic framework of thought : Creativity and psychedelics. Neuroimage 2020 ; 213 : 116726. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.