Open Access
Issue
Med Sci (Paris)
Volume 41, Number 2, Février 2025
Page(s) 145 - 153
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025010
Published online 03 March 2025
  1. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol 2017 ; 27 : R1147–R51. [CrossRef] [PubMed] [Google Scholar]
  2. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell 2010 ; 18 : 175–89. [CrossRef] [PubMed] [Google Scholar]
  3. Lapierre P, Alvarez F. Le foie : un organe du système immunitaire ? Med Sci (Paris) 2007 ; 23 : 985–90. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Organisation Mondiale de la Santé. Hépatite B. 2024; https://www.who.int/fr/news-room/fact-sheets/detail/hepatitis-b : consulté en ligne le 31/10/2024 [Google Scholar]
  5. Bourlière M. Les hépatites virales non alphabétiques. POST’U 2004 – Paris 2004; http://www.fmcgastro.org/wp-content/uploads/file/pdf/194.pdf : consulté en ligne le 22/10/2024. [Google Scholar]
  6. van Leeuwen LPM, de Jong W, Doornekamp L, et al. Exotic viral hepatitis: A review on epidemiology, pathogenesis, and treatment. J Hepatol 2022 ; 77 : 1431–43. [CrossRef] [PubMed] [Google Scholar]
  7. Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun 2020 ; 11 : 2130. [CrossRef] [PubMed] [Google Scholar]
  8. Succo T, Leparc-Goffart I, Ferre JB, et al. Autochthonous dengue outbreak in Nimes, South of France, July to September 2015. Euro Surveill 2016 ; 21. [Google Scholar]
  9. Semenza JC, Paz S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg Health Eur 2021 ; 9 : 100230. [CrossRef] [PubMed] [Google Scholar]
  10. Organisation Mondiale de la Santé. Prioritizing diseases for research and development in emergency contexts. 2021; https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts : consulté en ligne le 31/10/2024. [Google Scholar]
  11. Park MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol 2020 ; 20 : 351. [CrossRef] [PubMed] [Google Scholar]
  12. Deinhardt-Emmer S, Wittschieber D, Sanft J, et al. Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage. Elife 2021 ; 10. [Google Scholar]
  13. Usuda D, Kaneoka Y, Ono R, et al. Current perspectives of viral hepatitis. World J Hepatol 2024 ; 30 : 2402–17. [Google Scholar]
  14. Wasley A, Fiore A, Bell BP. Hepatitis A in the era of vaccination. Epidemiol Rev 2006 ; 28 : 101–11. [CrossRef] [PubMed] [Google Scholar]
  15. Leowattana W, Leowattana T. Dengue hemorrhagic fever and the liver. World J Hepatol 2021 ; 13 : 1968–76. [CrossRef] [PubMed] [Google Scholar]
  16. Douam F, Ploss A. Yellow Fever Virus: Knowledge Gaps Impeding the Fight Against an Old Foe. Trends Microbiol 2018 ; 26 : 913–28. [CrossRef] [PubMed] [Google Scholar]
  17. Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 2010 ; 8 : 491–500. [CrossRef] [PubMed] [Google Scholar]
  18. Burt FJ, Chen W, Miner JJ, et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis 2017 ; 17 : e107–17. [CrossRef] [PubMed] [Google Scholar]
  19. Organisation Mondiale de la Santé. Zika epidemiology update - February 2022. 2022; https://www.who.int/publications/m/item/zika-epidemiology-update-february-2022 : consulté en ligne le 31/10/2024. [Google Scholar]
  20. Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021 ; 13 : 709. [CrossRef] [PubMed] [Google Scholar]
  21. Nair N, Osterhaus A, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023 ; 12 : 1174. [CrossRef] [PubMed] [Google Scholar]
  22. Kitandwe PK, McKay PF, Kaleebu P, Shattock RJ. An Overview of Rift Valley Fever Vaccine Development Strategies. Vaccines (Basel) 2022 ; 10 : 1794. [CrossRef] [PubMed] [Google Scholar]
  23. Reynard O, Ritter M, Martin B, Volchkov V. La fièvre hémorragique de Crimée-Congo, une future problématique de santé en France ? Med Sci (Paris) 2021 ; 37 : 135–40. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19). [Updated 2023 Aug 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Disponible : https://www.ncbi.nlm.nih.gov/books/NBK554776/ [Google Scholar]
  25. Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents 2020 ; 55 : 105948. [CrossRef] [PubMed] [Google Scholar]
  26. Markov PV, Ghafari M, Beer M, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023 ; 21 : 361–79. [CrossRef] [PubMed] [Google Scholar]
  27. Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024 ; 9 : 1417–26. [CrossRef] [PubMed] [Google Scholar]
  28. Houlihan C, Behrens R. Lassa fever. BMJ 2017 ; 358 : j2986. [CrossRef] [PubMed] [Google Scholar]
  29. Pawlotsky JM. Virological markers for clinical trials in chronic viral hepatitis. JHEP Rep 2024 ; 6 : 101214. [CrossRef] [PubMed] [Google Scholar]
  30. Pinheiro BSS, Rodrigues JG, Dias FCR, et al. Hepatic damage caused by flaviviruses: A systematic review. Life Sci 2023 ; 331 : 122074. [CrossRef] [PubMed] [Google Scholar]
  31. Samanta J, Sharma V. Dengue and its effects on liver. World J Clin Cases 2015 ; 3 : 125–31. [CrossRef] [PubMed] [Google Scholar]
  32. Agarwal MP, Giri S, Sharma V, et al. Dengue causing fulminant hepatitis in a hepatitis B virus carrier. Biosci Trends 2011 ; 5 : 44–5. [CrossRef] [PubMed] [Google Scholar]
  33. Song ATW, Carneiro D’Albuquerque LA. Acute Liver Failure Secondary to Yellow Fever: A Challenging Scenario. Clin Liver Dis (Hoboken) 2019 ; 13 : 58–61. [CrossRef] [PubMed] [Google Scholar]
  34. Sherman KE, Rouster SD, Kong LX, et al. Zika virus replication and cytopathic effects in liver cells. PLoS One 2019 ; 14 : e0214016. [CrossRef] [PubMed] [Google Scholar]
  35. Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 1954 ; 48 : 139–45. [CrossRef] [PubMed] [Google Scholar]
  36. Wu Y, Cui X, Wu N, et al. A unique case of human Zika virus infection in association with severe liver injury and coagulation disorders. Sci Rep 2017 ; 7 : 11393. [CrossRef] [PubMed] [Google Scholar]
  37. Bente DA, Forrester NL, Watts DM, et al. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 2013 ; 100 : 159–89. [CrossRef] [PubMed] [Google Scholar]
  38. Burt FJ, Swanepoel R, Shieh WJ, et al. Immunohistochemical and in situ localization of Crimean-Congo hemorrhagic fever (CCHF) virus in human tissues and implications for CCHF pathogenesis. Arch Pathol Lab Med 1997 ; 121 : 839–46. [PubMed] [Google Scholar]
  39. Merson L, Bourner J, Jalloh S, et al. Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design. PLoS Negl Trop Dis 2021 ; 15 : e0009788. [CrossRef] [PubMed] [Google Scholar]
  40. Reynard O, Escudero-Perez B, Volchkov V. Dérégulation de l’hémostase dans les infections à filovirus. Med Sci (Paris) 2015 ; 31 : 143–50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Fausther-Bovendo H, Qiu X, He S, et al. NK Cells Accumulate in Infected Tissues and Contribute to Pathogenicity of Ebola Virus in Mice. J Virol 2019 ; 93. [Google Scholar]
  42. St Claire MC, Ragland DR, Bollinger L, Jahrling PB. Animal Models of Ebolavirus Infection. Comp Med 2017 ; 67 : 253–62. [PubMed] [Google Scholar]
  43. Ghoshal UC, Ghoshal U, Dhiman RK. Gastrointestinal and Hepatic Involvement in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Review. J Clin Exp Hepatol 2020 ; 10 : 622–8. [CrossRef] [PubMed] [Google Scholar]
  44. Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol 2020 ; 73 : 807–16. [CrossRef] [PubMed] [Google Scholar]
  45. Sarin SK, Choudhury A, Lau GK, et al. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol Int 2020 ; 14 : 690–700. [CrossRef] [PubMed] [Google Scholar]
  46. Liptak P, Nosakova L, Rosolanka R, et al. Acute-on-chronic liver failure in patients with severe acute respiratory syndrome coronavirus 2 infection. World J Hepatol 2023 ; 15 : 41–51. [CrossRef] [PubMed] [Google Scholar]
  47. Rosen L, Khin MM, U T. Recovery of virus from the liver of children with fatal dengue: reflections on the pathogenesis of the disease and its possible analogy with that of yellow fever. Res Virol 1989 ; 140 : 351–60. [CrossRef] [PubMed] [Google Scholar]
  48. Kangwanpong D, Bhamarapravati N, Lucia HL. Diagnosing dengue virus infection in archived autopsy tissues by means of the in situ PCR method: a case report. Clin Diagn Virol 1995 ; 3 : 165–72. [CrossRef] [PubMed] [Google Scholar]
  49. Couvelard A, Marianneau P, Bedel C, et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 1999 ; 30 : 1106–10. [CrossRef] [PubMed] [Google Scholar]
  50. Huerre MR, Lan NT, Marianneau P, et al. Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children. Virchows Arch 2001 ; 438 : 107–15. [CrossRef] [PubMed] [Google Scholar]
  51. da Costa Lopes J, Falcao LFM, Martins Filho AJ, et al. Factors Involved in the Apoptotic Cell Death Mechanism in Yellow Fever Hepatitis. Viruses 2022 ; 14. [Google Scholar]
  52. Shieh WJ, Paddock CD, Lederman E, et al. Pathologic studies on suspect animal and human cases of Rift Valley fever from an outbreak in Eastern Africa, 2006-2007. Am J Trop Med Hyg 2010 ; 83 : 38–42. [CrossRef] [PubMed] [Google Scholar]
  53. Lindquist ME, Zeng X, Altamura LA, et al. Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. J Virol 2018 ; 92 : e01083–18. [CrossRef] [PubMed] [Google Scholar]
  54. Haddock E, Feldmann F, Hawman DW, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol 2018 ; 3 : 556–62. [CrossRef] [PubMed] [Google Scholar]
  55. Reed C, Steele KE, Honko A, et al. Ultrastructural study of Rift Valley fever virus in the mouse model. Virology 2012 ; 431 : 58–70. [CrossRef] [Google Scholar]
  56. Paes MV, Lenzi HL, Nogueira AC, et al. Hepatic damage associated with dengue-2 virus replication in liver cells of BALB/c mice. Lab Invest 2009 ; 89 : 1140–51. [CrossRef] [PubMed] [Google Scholar]
  57. Courageot MP, Catteau A, Despres P. Mechanisms of dengue virus-induced cell death. Adv Virus Res 2003 ; 60 : 157–86. [CrossRef] [PubMed] [Google Scholar]
  58. Ma J, Chen R, Huang W, et al. In vitro and in vivo efficacy of a Rift Valley fever virus vaccine based on pseudovirus. Hum Vaccin Immunother 2019 ; 15 : 2286–94. [CrossRef] [PubMed] [Google Scholar]
  59. Diallo I, Ho J, Laffont B, et al. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021 ; 22 : 3792. [CrossRef] [PubMed] [Google Scholar]
  60. Scoon WA, Mancio-Silva L, Suder EL, et al. Ebola virus infection induces a delayed type I IFN response in bystander cells and the shutdown of key liver genes in human iPSC-derived hepatocytes. Stem Cell Reports 2022 ; 17 : 2286–302. [CrossRef] [PubMed] [Google Scholar]
  61. Yang L, Han Y, Nilsson-Payant BE, et al. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020 ; 27 : 125–36 e7. [CrossRef] [PubMed] [Google Scholar]
  62. Marianneau P, Steffan AM, Royer C, et al. Infection of primary cultures of human Kupffer cells by Dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol 1999 ; 73 : 5201–6. [CrossRef] [PubMed] [Google Scholar]
  63. Woodson SE, Freiberg AN, Holbrook MR. Differential cytokine responses from primary human Kupffer cells following infection with wild-type or vaccine strain yellow fever virus. Virology 2011 ; 412 : 188–95. [CrossRef] [Google Scholar]
  64. Aguilar-Briseno JA, Elliff JM, Patten JJ, et al. Effect of Interferon Gamma on Ebola Virus Infection of Primary Kupffer Cells and a Kupffer Cell Line. Viruses 2023 ; 15 : 2077. [CrossRef] [PubMed] [Google Scholar]
  65. Simmons G, Reeves JD, Grogan CC, et al. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 2003 ; 305 : 115–23. [CrossRef] [Google Scholar]
  66. Mori G, Strano M, Chiurlo M, et al. Probable West Nile Virus hepatitis: Case report. IDCases 2023 ; 33 : e01841. [CrossRef] [PubMed] [Google Scholar]
  67. Gilgenkrantz H. « A star is reborn ». Nouvelles avancées sur les fonctions de la cellule étoilée du foie. Med Sci (Paris) 2023 ; 39 : 921–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.