Open Access
Issue
Med Sci (Paris)
Volume 41, Number 2, Février 2025
Page(s) 137 - 144
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025009
Published online 03 March 2025
  1. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature 2013 ; 496 : 504–7. [CrossRef] [PubMed] [Google Scholar]
  2. Guzman MG, Gubler DJ, Izquierdo A, et al. Dengue infection. Nat Rev Dis Primer 2016 ; 2 : 16055. [CrossRef] [Google Scholar]
  3. Halstead SB. In Vivo Enhancement of Dengue Virus Infection in Rhesus Monkeys by Passively Transferred Antibody. J Infect Dis 1979 ; 140 : 527–33. [CrossRef] [PubMed] [Google Scholar]
  4. Fleury HJ. Virus émergents et ré-émergents. Virologie tropicale et subtropicale. Paris : Elsevier Masson SAS, 2023 : 240 p. [Google Scholar]
  5. Zeng Z, Zhan J, Chen L, et al. Global, regional, and national dengue burden from 1990 to 2017: A systematic analysis based on the global burden of disease study 2017. EClinicalMedicine 2021 ; 32 : 100712. [CrossRef] [PubMed] [Google Scholar]
  6. Stahl HC, Butenschoen VM, Tran HT, et al. Cost of dengue outbreaks: literature review and country case studies. BMC Public Health 2013 ; 13 : 1048. [CrossRef] [PubMed] [Google Scholar]
  7. OMS. L’OMS préqualifie un nouveau vaccin contre la dengue. https://www.who.int/fr/news/item/15-05-2024-who-prequalifies-new-dengue-vaccine [Google Scholar]
  8. OMS. Dengue et dengue sévère. https://www.who.int/fr/news-room/fact-sheets/detail/dengue-and-severe-dengue [Google Scholar]
  9. Kraemer MU, Sinka ME, Duda KA, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015 ; 4 : e08347. [CrossRef] [PubMed] [Google Scholar]
  10. Clemons A, Haugen M, Flannery E, et al. Aedes aegypti: an Emerging Model for Vector Mosquito Development. Cold Spring Harb Protoc 2010 ; 2010 : pdb.emo141. [CrossRef] [PubMed] [Google Scholar]
  11. Changement climatique 2021. Les bases scientifiques physiques : résumé à l’intention des décideurs. Contribution du groupe de travail I au sixième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC), Genève, Suisse, 2021. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WG1_SPM_French.pdf [Google Scholar]
  12. Messina JP, Brady OJ, Golding N, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol 2019 ; 4 : 1508–15. [CrossRef] [PubMed] [Google Scholar]
  13. Thomson MC, Stanberry LR. Climate Change and Vectorborne Diseases. N Engl J Med 2022 ; 387 : 1969–78. [CrossRef] [PubMed] [Google Scholar]
  14. Environmental migration. Migr Data Portal 2024. [Google Scholar]
  15. Bhatia S, Bansal D, Patil S, et al. A Retrospective Study of Climate Change Affecting Dengue: Evidences, Challenges and Future Directions. Front Public Health 2022 ; 10 : 884645. [CrossRef] [PubMed] [Google Scholar]
  16. Macdonald G. The Epidemiology and Control of Malaria. Oxford : Oxford University Press, 1957 : 201 p. [Google Scholar]
  17. Adhami J, Reiter P. Introduction and establishment of Aedes (Stegomyia) albopictus skuse (Diptera: Culicidae) in Albania. J Am Mosq Control Assoc 1998 ; 14 : 340–3. [PubMed] [Google Scholar]
  18. Dalla Pozza G, Majori G. First record of Aedes albopictus establishment in Italy. J Am Mosq Control Assoc 1992 ; 8 : 318–20. [PubMed] [Google Scholar]
  19. Ministère de la Santé et de l’Accès aux soins. Le moustique tigre : une implantation dans 78 départements en métropole. https://sante.gouv.fr/actualites/actualites-du-ministere/article/le-moustique-tigre-une-implantation-dans-78-departements-en-metropole [Google Scholar]
  20. Cunze S, Koch LK, Kochmann J, et al. Aedes albopictus and Aedes japonicus - two invasive mosquito species with different temperature niches in Europe. Parasit Vectors 2016 ; 9 : 573. [CrossRef] [PubMed] [Google Scholar]
  21. Giunti G, Becker N, Benelli G. Invasive mosquito vectors in Europe: From bioecology to surveillance and management. Acta Trop 2023 ; 239 : 106832. [CrossRef] [PubMed] [Google Scholar]
  22. Colón-González FJ, Harris I, Osborn TJ, et al. Limiting global-mean temperature increase to 1.5-2 °C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc Natl Acad Sci USA 2018 ; 115 : 6243–8. [CrossRef] [PubMed] [Google Scholar]
  23. Johansson MA, Cummings DAT, Glass GE. Multiyear Climate Variability and Dengue-El Niño Southern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data Analysis. PLoS Med 2009 ; 6 : e1000168. [CrossRef] [PubMed] [Google Scholar]
  24. Barr JS, Estevez-Lao TY, Khalif M, et al. Temperature and age, individually and interactively, shape the size, weight, and body composition of adult female mosquitoes. J Insect Physiol 2023 ; 148 : 104525. [CrossRef] [PubMed] [Google Scholar]
  25. Huestis DL, Yaro AS, Traoré AI, et al. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J Exp Biol 2011 ; 214 : 2345–53. [CrossRef] [PubMed] [Google Scholar]
  26. González-Tokman D, Córdoba-Aguilar A, Dáttilo W, et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev 2020 ; 95 : 802–21. [CrossRef] [PubMed] [Google Scholar]
  27. Schulte PM. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol 2015 ; 218 : 1856–66. [CrossRef] [PubMed] [Google Scholar]
  28. Scott TW, Amerasinghe PH, Morrison AC, et al. Longitudinal Studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency. J Med Entomol 2000 ; 37 : 89–101. [CrossRef] [PubMed] [Google Scholar]
  29. Marchoux E, Salimbeni AT, Simond PL. La fièvre jaune: rapport de la mission française. Sceaux : Imprimerie Charaire, 1903. [Google Scholar]
  30. Reinhold J, Lazzari C, Lahondère C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects 2018 ; 9 : 158. [CrossRef] [PubMed] [Google Scholar]
  31. Lamy K, Tran A, Portafaix T, et al. Impact of regional climate change on the mosquito vector Aedes albopictus in a tropical island environment : La Réunion. Sci Total Environ 2023 ; 875 : 162484. [CrossRef] [PubMed] [Google Scholar]
  32. Rowley WA, Graham CL. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J Insect Physiol 1968 ; 14 : 1251–7. [CrossRef] [PubMed] [Google Scholar]
  33. Delatte H, Gimonneau G, Triboire A, et al. Influence of Temperature on Immature Development, Survival, Longevity, Fecundity, and Gonotrophic Cycles of Aedes albopictus, Vector of Chikungunya and Dengue in the Indian Ocean. J Med Entomol 2009 ; 46 : 33–41. [CrossRef] [PubMed] [Google Scholar]
  34. Costanzo K, Occhino D. Effects of Temperature on Blood Feeding and Activity Levels in the Tiger Mosquito, Aedes albopictus. Insects 2023 ; 14 : 752. [CrossRef] [PubMed] [Google Scholar]
  35. Robert MA, Stewart-Ibarra AM, Estallo EL. Climate change and viral emergence: evidence from Aedes-borne arboviruses. Curr Opin Virol 2020 ; 40 : 41–7. [CrossRef] [PubMed] [Google Scholar]
  36. Blagrove MSC, Caminade C, Diggle PJ, et al. Potential for Zika virus transmission by mosquitoes in temperate climates. Proc R Soc B Biol Sci 2020 ; 287 : 20200119. [CrossRef] [PubMed] [Google Scholar]
  37. Alto BW, Wiggins K, Eastmond B, et al. Diurnal Temperature Range and Chikungunya Virus Infection in Invasive Mosquito Vectors. J Med Entomol 2018 ; 55 : 217–24. [CrossRef] [PubMed] [Google Scholar]
  38. Whitmire RE, Burke DS, Nisalak A, et al. Effect of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus. Am J Trop Med Hyg 1987 ; 36 : 143–52. [CrossRef] [PubMed] [Google Scholar]
  39. Terradas G, Manzano-Alvarez J, Vanalli C, et al. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. bioRxiv 2023 : 2023.05.17.541186. [Google Scholar]
  40. Lim XX, Chandramohan A, Lim XYE, et al. Epitope and Paratope Mapping Reveals Temperature-Dependent Alterations in the Dengue-Antibody Interface. Structure 2017 ; 25 : 1391–402.e3. [CrossRef] [PubMed] [Google Scholar]
  41. Rey FA. Two hosts, two structures. Nature 2013 ; 497 : 443–4. [CrossRef] [PubMed] [Google Scholar]
  42. Zhang X, Sun L, Rossmann MG. Temperature dependent conformational change of dengue virus. Curr Opin Virol 2015 ; 12 : 109–12. [CrossRef] [PubMed] [Google Scholar]
  43. Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020 ; 11 : 584846. [CrossRef] [PubMed] [Google Scholar]
  44. ANSES. Influence du réchauffement climatique sur la propagation des maladies vectorielles et de leurs vecteurs. https://www.anses.fr/fr/system/files/CNEV-Ft-Fev2016-Rapport_Changement_climatique_et_maladies_vectorielles.pdf [Google Scholar]
  45. Hii YL, Zhu H, Ng N, et al. Forecast of Dengue Incidence Using Temperature and Rainfall. PLoS Negl Trop Dis 2012 ; 6 : e1908. [CrossRef] [PubMed] [Google Scholar]
  46. Fouque F, Reeder JC. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect Dis Poverty 2019 ; 8 : 51. [CrossRef] [PubMed] [Google Scholar]
  47. Sang R, Lutomiah J, Said M, et al. Effects of Irrigation and Rainfall on the Population Dynamics of Rift Valley Fever and Other Arbovirus Mosquito Vectors in the Epidemic-Prone Tana River County, Kenya. J Med Entomol 2016 ; tjw206. [CrossRef] [Google Scholar]
  48. Brown JJ, Pascual M, Wimberly MC, et al. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023 ; 26 : 1029–49. [CrossRef] [PubMed] [Google Scholar]
  49. Trewin BJ, Kay BH, Darbro JM, et al. Increased container-breeding mosquito risk owing to drought-induced changes in water harvesting and storage in Brisbane, Australia. Int Health 2013 ; 5 : 251–8. [CrossRef] [PubMed] [Google Scholar]
  50. Sauerborn R, Ebi K. Climate change and natural disasters – integrating science and practice to protect health. Glob Health Action 2012 ; 5 : 19295. [CrossRef] [Google Scholar]
  51. Tabari H. Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 2020 ; 10 : 13768. [CrossRef] [PubMed] [Google Scholar]
  52. Ault TR. On the essentials of drought in a changing climate. Science 2020 ; 368 : 256–60. [CrossRef] [PubMed] [Google Scholar]
  53. Nosrat C, Altamirano J, Anyamba A, et al. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl Trop Dis 2021 ; 15 : e0009182. [CrossRef] [PubMed] [Google Scholar]
  54. Ward HM, Qualls WA. Integrating Vector and Nuisance Mosquito Control for Severe Weather Response. J Am Mosq Control Assoc 2020 ; 36 : 41–8. [CrossRef] [PubMed] [Google Scholar]
  55. Barrera R, Felix G, Acevedo V, et al. Impacts of Hurricanes Irma and Maria on Aedes aegypti Populations, Aquatic Habitats, and Mosquito Infections with Dengue, Chikungunya, and Zika Viruses in Puerto Rico. Am J Trop Med Hyg 2019 ; 100 : 1413–20. [CrossRef] [PubMed] [Google Scholar]
  56. CDC. What to Do After a Hurricane or Flood. https://www.cdc.gov/mosquitoes/response/index.html [Google Scholar]
  57. Chen H, Jin Y, Liu Z, et al. Central-Pacific El Niño-Southern Oscillation less predictable under greenhouse warming. Nat Commun 2024 ; 15 : 4370. [CrossRef] [PubMed] [Google Scholar]
  58. Cai W, Borlace S, Lengaigne M, et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 2014 ; 4 : 111–6. [CrossRef] [Google Scholar]
  59. Quintero-Herrera LL, Ramírez-Jaramillo V, Bernal-Gutiérrez S, et al. Potential impact of climatic variability on the epidemiology of dengue in Risaralda, Colombia, 2010-2011. J Infect Public Health 2015 ; 8 : 291–7. [CrossRef] [PubMed] [Google Scholar]
  60. McMichael C. Climate change-related migration and infectious disease. Virulence 2015 ; 6 : 548–53. [CrossRef] [PubMed] [Google Scholar]
  61. Semenza JC, Ebi KL. Climate change impact on migration, travel, travel destinations and the tourism industry. J Travel Med 2019 ; 26 : taz026. [CrossRef] [PubMed] [Google Scholar]
  62. Harish V, Colón-González FJ, Moreira FRR, et al. Human movement and environmental barriers shape the emergence of dengue. Nat Commun 2024 ; 15 : 4205. [CrossRef] [PubMed] [Google Scholar]
  63. Liu-Helmersson J, Stenlund H, Wilder-Smith A, et al. Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. PLoS One 2014 ; 9 : e89783. [CrossRef] [PubMed] [Google Scholar]
  64. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 2009 ; 139 : 1268–78. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.