Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 2, Février 2025
Page(s) 145 - 153
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025010
Publié en ligne 3 mars 2025
  1. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol 2017 ; 27 : R1147–R51. [CrossRef] [PubMed] [Google Scholar]
  2. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell 2010 ; 18 : 175–89. [CrossRef] [PubMed] [Google Scholar]
  3. Lapierre P, Alvarez F. Le foie : un organe du système immunitaire ? Med Sci (Paris) 2007 ; 23 : 985–90. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Organisation Mondiale de la Santé. Hépatite B. 2024; https://www.who.int/fr/news-room/fact-sheets/detail/hepatitis-b : consulté en ligne le 31/10/2024 [Google Scholar]
  5. Bourlière M. Les hépatites virales non alphabétiques. POST’U 2004 – Paris 2004; http://www.fmcgastro.org/wp-content/uploads/file/pdf/194.pdf : consulté en ligne le 22/10/2024. [Google Scholar]
  6. van Leeuwen LPM, de Jong W, Doornekamp L, et al. Exotic viral hepatitis: A review on epidemiology, pathogenesis, and treatment. J Hepatol 2022 ; 77 : 1431–43. [CrossRef] [PubMed] [Google Scholar]
  7. Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun 2020 ; 11 : 2130. [CrossRef] [PubMed] [Google Scholar]
  8. Succo T, Leparc-Goffart I, Ferre JB, et al. Autochthonous dengue outbreak in Nimes, South of France, July to September 2015. Euro Surveill 2016 ; 21. [Google Scholar]
  9. Semenza JC, Paz S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg Health Eur 2021 ; 9 : 100230. [CrossRef] [PubMed] [Google Scholar]
  10. Organisation Mondiale de la Santé. Prioritizing diseases for research and development in emergency contexts. 2021; https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts : consulté en ligne le 31/10/2024. [Google Scholar]
  11. Park MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol 2020 ; 20 : 351. [CrossRef] [PubMed] [Google Scholar]
  12. Deinhardt-Emmer S, Wittschieber D, Sanft J, et al. Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage. Elife 2021 ; 10. [Google Scholar]
  13. Usuda D, Kaneoka Y, Ono R, et al. Current perspectives of viral hepatitis. World J Hepatol 2024 ; 30 : 2402–17. [Google Scholar]
  14. Wasley A, Fiore A, Bell BP. Hepatitis A in the era of vaccination. Epidemiol Rev 2006 ; 28 : 101–11. [CrossRef] [PubMed] [Google Scholar]
  15. Leowattana W, Leowattana T. Dengue hemorrhagic fever and the liver. World J Hepatol 2021 ; 13 : 1968–76. [CrossRef] [PubMed] [Google Scholar]
  16. Douam F, Ploss A. Yellow Fever Virus: Knowledge Gaps Impeding the Fight Against an Old Foe. Trends Microbiol 2018 ; 26 : 913–28. [CrossRef] [PubMed] [Google Scholar]
  17. Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 2010 ; 8 : 491–500. [CrossRef] [PubMed] [Google Scholar]
  18. Burt FJ, Chen W, Miner JJ, et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis 2017 ; 17 : e107–17. [CrossRef] [PubMed] [Google Scholar]
  19. Organisation Mondiale de la Santé. Zika epidemiology update - February 2022. 2022; https://www.who.int/publications/m/item/zika-epidemiology-update-february-2022 : consulté en ligne le 31/10/2024. [Google Scholar]
  20. Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021 ; 13 : 709. [CrossRef] [PubMed] [Google Scholar]
  21. Nair N, Osterhaus A, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023 ; 12 : 1174. [CrossRef] [PubMed] [Google Scholar]
  22. Kitandwe PK, McKay PF, Kaleebu P, Shattock RJ. An Overview of Rift Valley Fever Vaccine Development Strategies. Vaccines (Basel) 2022 ; 10 : 1794. [CrossRef] [PubMed] [Google Scholar]
  23. Reynard O, Ritter M, Martin B, Volchkov V. La fièvre hémorragique de Crimée-Congo, une future problématique de santé en France ? Med Sci (Paris) 2021 ; 37 : 135–40. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19). [Updated 2023 Aug 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Disponible : https://www.ncbi.nlm.nih.gov/books/NBK554776/ [Google Scholar]
  25. Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents 2020 ; 55 : 105948. [CrossRef] [PubMed] [Google Scholar]
  26. Markov PV, Ghafari M, Beer M, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023 ; 21 : 361–79. [CrossRef] [PubMed] [Google Scholar]
  27. Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024 ; 9 : 1417–26. [CrossRef] [PubMed] [Google Scholar]
  28. Houlihan C, Behrens R. Lassa fever. BMJ 2017 ; 358 : j2986. [CrossRef] [PubMed] [Google Scholar]
  29. Pawlotsky JM. Virological markers for clinical trials in chronic viral hepatitis. JHEP Rep 2024 ; 6 : 101214. [CrossRef] [PubMed] [Google Scholar]
  30. Pinheiro BSS, Rodrigues JG, Dias FCR, et al. Hepatic damage caused by flaviviruses: A systematic review. Life Sci 2023 ; 331 : 122074. [CrossRef] [PubMed] [Google Scholar]
  31. Samanta J, Sharma V. Dengue and its effects on liver. World J Clin Cases 2015 ; 3 : 125–31. [CrossRef] [PubMed] [Google Scholar]
  32. Agarwal MP, Giri S, Sharma V, et al. Dengue causing fulminant hepatitis in a hepatitis B virus carrier. Biosci Trends 2011 ; 5 : 44–5. [CrossRef] [PubMed] [Google Scholar]
  33. Song ATW, Carneiro D’Albuquerque LA. Acute Liver Failure Secondary to Yellow Fever: A Challenging Scenario. Clin Liver Dis (Hoboken) 2019 ; 13 : 58–61. [CrossRef] [PubMed] [Google Scholar]
  34. Sherman KE, Rouster SD, Kong LX, et al. Zika virus replication and cytopathic effects in liver cells. PLoS One 2019 ; 14 : e0214016. [CrossRef] [PubMed] [Google Scholar]
  35. Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 1954 ; 48 : 139–45. [CrossRef] [PubMed] [Google Scholar]
  36. Wu Y, Cui X, Wu N, et al. A unique case of human Zika virus infection in association with severe liver injury and coagulation disorders. Sci Rep 2017 ; 7 : 11393. [CrossRef] [PubMed] [Google Scholar]
  37. Bente DA, Forrester NL, Watts DM, et al. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 2013 ; 100 : 159–89. [CrossRef] [PubMed] [Google Scholar]
  38. Burt FJ, Swanepoel R, Shieh WJ, et al. Immunohistochemical and in situ localization of Crimean-Congo hemorrhagic fever (CCHF) virus in human tissues and implications for CCHF pathogenesis. Arch Pathol Lab Med 1997 ; 121 : 839–46. [PubMed] [Google Scholar]
  39. Merson L, Bourner J, Jalloh S, et al. Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design. PLoS Negl Trop Dis 2021 ; 15 : e0009788. [CrossRef] [PubMed] [Google Scholar]
  40. Reynard O, Escudero-Perez B, Volchkov V. Dérégulation de l’hémostase dans les infections à filovirus. Med Sci (Paris) 2015 ; 31 : 143–50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Fausther-Bovendo H, Qiu X, He S, et al. NK Cells Accumulate in Infected Tissues and Contribute to Pathogenicity of Ebola Virus in Mice. J Virol 2019 ; 93. [Google Scholar]
  42. St Claire MC, Ragland DR, Bollinger L, Jahrling PB. Animal Models of Ebolavirus Infection. Comp Med 2017 ; 67 : 253–62. [PubMed] [Google Scholar]
  43. Ghoshal UC, Ghoshal U, Dhiman RK. Gastrointestinal and Hepatic Involvement in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Review. J Clin Exp Hepatol 2020 ; 10 : 622–8. [CrossRef] [PubMed] [Google Scholar]
  44. Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol 2020 ; 73 : 807–16. [CrossRef] [PubMed] [Google Scholar]
  45. Sarin SK, Choudhury A, Lau GK, et al. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol Int 2020 ; 14 : 690–700. [CrossRef] [PubMed] [Google Scholar]
  46. Liptak P, Nosakova L, Rosolanka R, et al. Acute-on-chronic liver failure in patients with severe acute respiratory syndrome coronavirus 2 infection. World J Hepatol 2023 ; 15 : 41–51. [CrossRef] [PubMed] [Google Scholar]
  47. Rosen L, Khin MM, U T. Recovery of virus from the liver of children with fatal dengue: reflections on the pathogenesis of the disease and its possible analogy with that of yellow fever. Res Virol 1989 ; 140 : 351–60. [CrossRef] [PubMed] [Google Scholar]
  48. Kangwanpong D, Bhamarapravati N, Lucia HL. Diagnosing dengue virus infection in archived autopsy tissues by means of the in situ PCR method: a case report. Clin Diagn Virol 1995 ; 3 : 165–72. [CrossRef] [PubMed] [Google Scholar]
  49. Couvelard A, Marianneau P, Bedel C, et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 1999 ; 30 : 1106–10. [CrossRef] [PubMed] [Google Scholar]
  50. Huerre MR, Lan NT, Marianneau P, et al. Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children. Virchows Arch 2001 ; 438 : 107–15. [CrossRef] [PubMed] [Google Scholar]
  51. da Costa Lopes J, Falcao LFM, Martins Filho AJ, et al. Factors Involved in the Apoptotic Cell Death Mechanism in Yellow Fever Hepatitis. Viruses 2022 ; 14. [Google Scholar]
  52. Shieh WJ, Paddock CD, Lederman E, et al. Pathologic studies on suspect animal and human cases of Rift Valley fever from an outbreak in Eastern Africa, 2006-2007. Am J Trop Med Hyg 2010 ; 83 : 38–42. [CrossRef] [PubMed] [Google Scholar]
  53. Lindquist ME, Zeng X, Altamura LA, et al. Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. J Virol 2018 ; 92 : e01083–18. [CrossRef] [PubMed] [Google Scholar]
  54. Haddock E, Feldmann F, Hawman DW, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol 2018 ; 3 : 556–62. [CrossRef] [PubMed] [Google Scholar]
  55. Reed C, Steele KE, Honko A, et al. Ultrastructural study of Rift Valley fever virus in the mouse model. Virology 2012 ; 431 : 58–70. [CrossRef] [Google Scholar]
  56. Paes MV, Lenzi HL, Nogueira AC, et al. Hepatic damage associated with dengue-2 virus replication in liver cells of BALB/c mice. Lab Invest 2009 ; 89 : 1140–51. [CrossRef] [PubMed] [Google Scholar]
  57. Courageot MP, Catteau A, Despres P. Mechanisms of dengue virus-induced cell death. Adv Virus Res 2003 ; 60 : 157–86. [CrossRef] [PubMed] [Google Scholar]
  58. Ma J, Chen R, Huang W, et al. In vitro and in vivo efficacy of a Rift Valley fever virus vaccine based on pseudovirus. Hum Vaccin Immunother 2019 ; 15 : 2286–94. [CrossRef] [PubMed] [Google Scholar]
  59. Diallo I, Ho J, Laffont B, et al. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021 ; 22 : 3792. [CrossRef] [PubMed] [Google Scholar]
  60. Scoon WA, Mancio-Silva L, Suder EL, et al. Ebola virus infection induces a delayed type I IFN response in bystander cells and the shutdown of key liver genes in human iPSC-derived hepatocytes. Stem Cell Reports 2022 ; 17 : 2286–302. [CrossRef] [PubMed] [Google Scholar]
  61. Yang L, Han Y, Nilsson-Payant BE, et al. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020 ; 27 : 125–36 e7. [CrossRef] [PubMed] [Google Scholar]
  62. Marianneau P, Steffan AM, Royer C, et al. Infection of primary cultures of human Kupffer cells by Dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol 1999 ; 73 : 5201–6. [CrossRef] [PubMed] [Google Scholar]
  63. Woodson SE, Freiberg AN, Holbrook MR. Differential cytokine responses from primary human Kupffer cells following infection with wild-type or vaccine strain yellow fever virus. Virology 2011 ; 412 : 188–95. [CrossRef] [Google Scholar]
  64. Aguilar-Briseno JA, Elliff JM, Patten JJ, et al. Effect of Interferon Gamma on Ebola Virus Infection of Primary Kupffer Cells and a Kupffer Cell Line. Viruses 2023 ; 15 : 2077. [CrossRef] [PubMed] [Google Scholar]
  65. Simmons G, Reeves JD, Grogan CC, et al. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 2003 ; 305 : 115–23. [CrossRef] [Google Scholar]
  66. Mori G, Strano M, Chiurlo M, et al. Probable West Nile Virus hepatitis: Case report. IDCases 2023 ; 33 : e01841. [CrossRef] [PubMed] [Google Scholar]
  67. Gilgenkrantz H. « A star is reborn ». Nouvelles avancées sur les fonctions de la cellule étoilée du foie. Med Sci (Paris) 2023 ; 39 : 921–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.