Free Access
Issue
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
Page(s) 17 - 21
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2024161
Published online 18 November 2024
  1. Avila G. Disturbed Ca2+ Homeostasis in Muscle-Wasting Disorders. Adv Exp Med Biol 2018 ; 1088 : 307–326. [CrossRef] [PubMed] [Google Scholar]
  2. Zampieri S, Mammucari C, Romanello V, et al. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiological Reports 2016 ; 4 : e13005. [CrossRef] [PubMed] [Google Scholar]
  3. Prokopchuk O, Liu Y, Wang L, et al. Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc Immunol Rev 2007 ; 13 : 67–75. [PubMed] [Google Scholar]
  4. Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study. Preventive Medicine 2005 ; 40 : 432–437. [CrossRef] [Google Scholar]
  5. De Mario A, Gherardi G, Rizzuto R, et al. Skeletal muscle mitochondria in health and disease. Cell Calcium 2021 ; 94 : 102357. [CrossRef] [PubMed] [Google Scholar]
  6. Freyssenet D, Berthon P, Denis C. Mitochondrial biogenesis in skeletal muscle in response to endurance exercises. Arch Physiol Biochem 1996 ; 104 : 129–141. [CrossRef] [PubMed] [Google Scholar]
  7. Bouzid MA, Filaire E, Matran R, et al. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int J Sports Med 2018 ; 39 : 21–28. [CrossRef] [PubMed] [Google Scholar]
  8. Daussin FN, Zoll J, Ponsot E, et al. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol (1985) 2008 ; 104 : 1436–1441. [CrossRef] [PubMed] [Google Scholar]
  9. Abu-Baker A, Messaed C, Laganiere J, et al. Involvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy. Hum Mol Genet 2003 ; 12 : 2609–2623. [CrossRef] [PubMed] [Google Scholar]
  10. Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J 2019 ; 286 : 379–398. [CrossRef] [PubMed] [Google Scholar]
  11. Boulinguiez A, Roth F, Mouigni HR, et al. [Nuclear aggregates in oculopharyngeal muscular dystrophy]. Med Sci (Paris) 2022 ; 38 Hors série n° 1 : 13–16. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Evans WJ, Shankaran M, Smith EC, et al. Profoundly lower muscle mass and rate of contractile protein synthesis in boys with Duchenne muscular dystrophy. J Physiol 2021 ; 599 : 5215–5227. [CrossRef] [PubMed] [Google Scholar]
  13. Burd NA, West DWD, Staples AW, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 2010 ; 5 : e12033. [CrossRef] [PubMed] [Google Scholar]
  14. Martinez-Canton M, Galvan-Alvarez V, Gallego-Selles A, et al. Activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle by high-intensity exercise in normoxia and hypoxia and after recovery with or without post-exercise ischemia. Free Radic Biol Med 2024 ; 222 : 607–624. [CrossRef] [PubMed] [Google Scholar]
  15. Martin N, Lewis M. Satellite cell activation and number following acute and chronic exercise: A mini review. Cellular and Molecular Exercise Physiology 2012 ; 1 : e1. [CrossRef] [Google Scholar]
  16. Eksteen GJ. Satellite cell proliferation in response to a chronic laboratory-controlled uphill vs. downhill interval training intervention. University of Stellenbosch 2006. [Google Scholar]
  17. Cisterna B, Lofaro FD, Lacavalla MA, et al. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front. Cell Dev. Biol. 2023 ; 11. [CrossRef] [Google Scholar]
  18. Bensalah M, Muraine L, Boulinguiez A, et al. A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis. J Cachexia Sarcopenia Muscle 2022 ; 13 : 1771–1784. [CrossRef] [PubMed] [Google Scholar]
  19. Saito Y, Chikenji TS, Matsumura T, et al. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun 2020 ; 11 : 889. [CrossRef] [PubMed] [Google Scholar]
  20. Ng SY, Mikhail A, Ljubicic V. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice. J Physiol 2019 ; 597 : 4757–4778. [CrossRef] [PubMed] [Google Scholar]
  21. Hammer S, Toussaint M, Vollsæter M, et al. Exercise Training in Duchenne Muscular Dystrophy: A Systematic Review and Meta-Analysis. J Rehabil Med 2022 ; 54 : jrm00250. [PubMed] [Google Scholar]
  22. Lanza G, Pino M, Fisicaro F, et al. Motor activity and Becker’s muscular dystrophy: lights and shadows. Phys Sportsmed 2020 ; 48 : 151–160. [CrossRef] [PubMed] [Google Scholar]
  23. Alemdaroğlu I, Karaduman A, Yilmaz ÖT, et al. Different types of upper extremity exercise training in Duchenne muscular dystrophy: effects on functional performance, strength, endurance, and ambulation. Muscle Nerve 2015 ; 51 : 697–705. [CrossRef] [PubMed] [Google Scholar]
  24. Lott DJ, Taivassalo T, Cooke KD, et al. Safety, Feasibility, and Efficacy of Strengthening Exercise in Duchenne Muscular Dystrophy. Muscle Nerve 2021 ; 63 : 320–326. [CrossRef] [PubMed] [Google Scholar]
  25. Sveen ML, Jeppesen TD, Hauerslev S, et al. Endurance training improves fitness and strength in patients with Becker muscular dystrophy. Brain 2008 ; 131 : 2824–2831. [CrossRef] [PubMed] [Google Scholar]
  26. Lewelt A, Krosschell KJ, Stoddard GJ, et al. Resistance strength training exercise in children with spinal muscular atrophy. Muscle Nerve 2015 ; 52 : 559–567. [CrossRef] [PubMed] [Google Scholar]
  27. Roussel M-P, Hébert LJ, Duchesne E. Strength-training effectively alleviates skeletal muscle impairments in myotonic dystrophy type 1. Neuromuscular Disorders 2020 ; 30 : 283–293. [CrossRef] [PubMed] [Google Scholar]
  28. Mikhail AI, Nagy PL, Manta K, et al. Aerobic exercise elicits clinical adaptations in myotonic dystrophy type 1 patients independently of pathophysiological changes. J Clin Invest 2022 ; 132 : e156125. [CrossRef] [PubMed] [Google Scholar]
  29. Aldehag A, Jonsson H, Lindblad J, et al. Effects of hand-training in persons with myotonic dystrophy type 1 – a randomised controlled cross-over pilot study. Disabil Rehabil 2013 ; 35 : 1798–1807. [CrossRef] [PubMed] [Google Scholar]
  30. Voet NBM, Kooi EL van der, Riphagen II, et al. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2013 ; CD003907. [PubMed] [Google Scholar]
  31. Andersen G, Heje K, Buch AE, et al. High-intensity interval training in facioscapulohumeral muscular dystrophy type 1: a randomized clinical trial. J Neurol 2017 ; 264 : 1099–1106. [CrossRef] [PubMed] [Google Scholar]
  32. SICILIANO G, SIMONCINI C, GIANNOTTI S, et al. Muscle exercise in limb girdle muscular dystrophies: pitfall and advantages. Acta Myol 2015 ; 34 : 3–8. [PubMed] [Google Scholar]
  33. O’Connor L, Westerberg E, Punga AR. Myasthenia Gravis and Physical Exercise: A Novel Paradigm. Front Neurol 2020 ; 11 : 675. [CrossRef] [PubMed] [Google Scholar]
  34. Vissing CR, Hedermann G, Vissing J. Moderate-intensity aerobic exercise improves physical fitness in bethlem myopathy. Muscle Nerve 2019 ; 60 : 183–188. [CrossRef] [PubMed] [Google Scholar]
  35. Adaikina A, Hofman PL, O’Grady GL, et al. Exercise Training as Part of Musculoskeletal Management for Congenital Myopathy: Where Are We Now? Pediatr Neurol 2020 ; 104 : 13–18. [CrossRef] [PubMed] [Google Scholar]
  36. Vissing J. Exercise training in metabolic myopathies. Rev Neurol (Paris) 2016 ; 172 : 559–565. [CrossRef] [PubMed] [Google Scholar]
  37. Nogales-Gadea G, Santalla A, Ballester-Lopez A, et al. Exercise and Preexercise Nutrition as Treatment for McArdle Disease. Med Sci Sports Exerc 2016 ; 48 : 673–679. [CrossRef] [PubMed] [Google Scholar]
  38. Ismailova G, Wagenmakers MAEM, Brusse E, et al. Long-term benefits of physical activity in adult patients with late onset Pompe disease: a retrospective cohort study with 10 years of follow-up. Orphanet J Rare Dis 2023 ; 18 : 319. [CrossRef] [PubMed] [Google Scholar]
  39. Zhang H, Liu Y, Ma J, et al. Systematic review of physical exercise for patients with idiopathic inflammatory myopathies. Nurs Health Sci 2021 ; 23 : 312–324. [CrossRef] [PubMed] [Google Scholar]
  40. Moore UR, Jacobs M, Fernandez-Torron R, et al. Teenage exercise is associated with earlier symptom onset in dysferlinopathy: a retrospective cohort study. J Neurol Neurosurg Psychiatry 2018 ; 89 : 1224–1226. [CrossRef] [PubMed] [Google Scholar]
  41. Noury J-B, Zagnoli F, Petit F, et al. Exercise efficiency impairment in metabolic myopathies. Sci Rep 2020 ; 10 : 8765. [CrossRef] [PubMed] [Google Scholar]
  42. Ribeiro A, Suetterlin KJ, Skorupinska I, et al. The long exercise test as a functional marker of periodic paralysis. Muscle & Nerve 2022 ; 65 : 581–585. [CrossRef] [PubMed] [Google Scholar]
  43. Chaix M-A, Marcotte F, Dore A, et al. Risks and Benefits of Exercise Training in Adults With Congenital Heart Disease. Canadian Journal of Cardiology 2016 ; 32 : 459–466. [CrossRef] [Google Scholar]
  44. Boulinguiez A, Dhiab J, Crisol B, et al. Different outcomes of endurance and resistance exercise in skeletal muscles of Oculopharyngeal muscular dystrophy. J Cachexia Sarcopenia Muscle 2024 ; Publication en ligne [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.