Accès gratuit
Numéro
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
Page(s) 17 - 21
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2024161
Publié en ligne 18 novembre 2024
  1. Avila G. Disturbed Ca2+ Homeostasis in Muscle-Wasting Disorders. Adv Exp Med Biol 2018 ; 1088 : 307–326. [CrossRef] [PubMed] [Google Scholar]
  2. Zampieri S, Mammucari C, Romanello V, et al. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiological Reports 2016 ; 4 : e13005. [CrossRef] [PubMed] [Google Scholar]
  3. Prokopchuk O, Liu Y, Wang L, et al. Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc Immunol Rev 2007 ; 13 : 67–75. [PubMed] [Google Scholar]
  4. Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study. Preventive Medicine 2005 ; 40 : 432–437. [CrossRef] [Google Scholar]
  5. De Mario A, Gherardi G, Rizzuto R, et al. Skeletal muscle mitochondria in health and disease. Cell Calcium 2021 ; 94 : 102357. [CrossRef] [PubMed] [Google Scholar]
  6. Freyssenet D, Berthon P, Denis C. Mitochondrial biogenesis in skeletal muscle in response to endurance exercises. Arch Physiol Biochem 1996 ; 104 : 129–141. [CrossRef] [PubMed] [Google Scholar]
  7. Bouzid MA, Filaire E, Matran R, et al. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int J Sports Med 2018 ; 39 : 21–28. [CrossRef] [PubMed] [Google Scholar]
  8. Daussin FN, Zoll J, Ponsot E, et al. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol (1985) 2008 ; 104 : 1436–1441. [CrossRef] [PubMed] [Google Scholar]
  9. Abu-Baker A, Messaed C, Laganiere J, et al. Involvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy. Hum Mol Genet 2003 ; 12 : 2609–2623. [CrossRef] [PubMed] [Google Scholar]
  10. Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J 2019 ; 286 : 379–398. [CrossRef] [PubMed] [Google Scholar]
  11. Boulinguiez A, Roth F, Mouigni HR, et al. [Nuclear aggregates in oculopharyngeal muscular dystrophy]. Med Sci (Paris) 2022 ; 38 Hors série n° 1 : 13–16. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Evans WJ, Shankaran M, Smith EC, et al. Profoundly lower muscle mass and rate of contractile protein synthesis in boys with Duchenne muscular dystrophy. J Physiol 2021 ; 599 : 5215–5227. [CrossRef] [PubMed] [Google Scholar]
  13. Burd NA, West DWD, Staples AW, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 2010 ; 5 : e12033. [CrossRef] [PubMed] [Google Scholar]
  14. Martinez-Canton M, Galvan-Alvarez V, Gallego-Selles A, et al. Activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle by high-intensity exercise in normoxia and hypoxia and after recovery with or without post-exercise ischemia. Free Radic Biol Med 2024 ; 222 : 607–624. [CrossRef] [PubMed] [Google Scholar]
  15. Martin N, Lewis M. Satellite cell activation and number following acute and chronic exercise: A mini review. Cellular and Molecular Exercise Physiology 2012 ; 1 : e1. [CrossRef] [Google Scholar]
  16. Eksteen GJ. Satellite cell proliferation in response to a chronic laboratory-controlled uphill vs. downhill interval training intervention. University of Stellenbosch 2006. [Google Scholar]
  17. Cisterna B, Lofaro FD, Lacavalla MA, et al. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front. Cell Dev. Biol. 2023 ; 11. [CrossRef] [Google Scholar]
  18. Bensalah M, Muraine L, Boulinguiez A, et al. A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis. J Cachexia Sarcopenia Muscle 2022 ; 13 : 1771–1784. [CrossRef] [PubMed] [Google Scholar]
  19. Saito Y, Chikenji TS, Matsumura T, et al. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun 2020 ; 11 : 889. [CrossRef] [PubMed] [Google Scholar]
  20. Ng SY, Mikhail A, Ljubicic V. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice. J Physiol 2019 ; 597 : 4757–4778. [CrossRef] [PubMed] [Google Scholar]
  21. Hammer S, Toussaint M, Vollsæter M, et al. Exercise Training in Duchenne Muscular Dystrophy: A Systematic Review and Meta-Analysis. J Rehabil Med 2022 ; 54 : jrm00250. [PubMed] [Google Scholar]
  22. Lanza G, Pino M, Fisicaro F, et al. Motor activity and Becker’s muscular dystrophy: lights and shadows. Phys Sportsmed 2020 ; 48 : 151–160. [CrossRef] [PubMed] [Google Scholar]
  23. Alemdaroğlu I, Karaduman A, Yilmaz ÖT, et al. Different types of upper extremity exercise training in Duchenne muscular dystrophy: effects on functional performance, strength, endurance, and ambulation. Muscle Nerve 2015 ; 51 : 697–705. [CrossRef] [PubMed] [Google Scholar]
  24. Lott DJ, Taivassalo T, Cooke KD, et al. Safety, Feasibility, and Efficacy of Strengthening Exercise in Duchenne Muscular Dystrophy. Muscle Nerve 2021 ; 63 : 320–326. [CrossRef] [PubMed] [Google Scholar]
  25. Sveen ML, Jeppesen TD, Hauerslev S, et al. Endurance training improves fitness and strength in patients with Becker muscular dystrophy. Brain 2008 ; 131 : 2824–2831. [CrossRef] [PubMed] [Google Scholar]
  26. Lewelt A, Krosschell KJ, Stoddard GJ, et al. Resistance strength training exercise in children with spinal muscular atrophy. Muscle Nerve 2015 ; 52 : 559–567. [CrossRef] [PubMed] [Google Scholar]
  27. Roussel M-P, Hébert LJ, Duchesne E. Strength-training effectively alleviates skeletal muscle impairments in myotonic dystrophy type 1. Neuromuscular Disorders 2020 ; 30 : 283–293. [CrossRef] [PubMed] [Google Scholar]
  28. Mikhail AI, Nagy PL, Manta K, et al. Aerobic exercise elicits clinical adaptations in myotonic dystrophy type 1 patients independently of pathophysiological changes. J Clin Invest 2022 ; 132 : e156125. [CrossRef] [PubMed] [Google Scholar]
  29. Aldehag A, Jonsson H, Lindblad J, et al. Effects of hand-training in persons with myotonic dystrophy type 1 – a randomised controlled cross-over pilot study. Disabil Rehabil 2013 ; 35 : 1798–1807. [CrossRef] [PubMed] [Google Scholar]
  30. Voet NBM, Kooi EL van der, Riphagen II, et al. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2013 ; CD003907. [PubMed] [Google Scholar]
  31. Andersen G, Heje K, Buch AE, et al. High-intensity interval training in facioscapulohumeral muscular dystrophy type 1: a randomized clinical trial. J Neurol 2017 ; 264 : 1099–1106. [CrossRef] [PubMed] [Google Scholar]
  32. SICILIANO G, SIMONCINI C, GIANNOTTI S, et al. Muscle exercise in limb girdle muscular dystrophies: pitfall and advantages. Acta Myol 2015 ; 34 : 3–8. [PubMed] [Google Scholar]
  33. O’Connor L, Westerberg E, Punga AR. Myasthenia Gravis and Physical Exercise: A Novel Paradigm. Front Neurol 2020 ; 11 : 675. [CrossRef] [PubMed] [Google Scholar]
  34. Vissing CR, Hedermann G, Vissing J. Moderate-intensity aerobic exercise improves physical fitness in bethlem myopathy. Muscle Nerve 2019 ; 60 : 183–188. [CrossRef] [PubMed] [Google Scholar]
  35. Adaikina A, Hofman PL, O’Grady GL, et al. Exercise Training as Part of Musculoskeletal Management for Congenital Myopathy: Where Are We Now? Pediatr Neurol 2020 ; 104 : 13–18. [CrossRef] [PubMed] [Google Scholar]
  36. Vissing J. Exercise training in metabolic myopathies. Rev Neurol (Paris) 2016 ; 172 : 559–565. [CrossRef] [PubMed] [Google Scholar]
  37. Nogales-Gadea G, Santalla A, Ballester-Lopez A, et al. Exercise and Preexercise Nutrition as Treatment for McArdle Disease. Med Sci Sports Exerc 2016 ; 48 : 673–679. [CrossRef] [PubMed] [Google Scholar]
  38. Ismailova G, Wagenmakers MAEM, Brusse E, et al. Long-term benefits of physical activity in adult patients with late onset Pompe disease: a retrospective cohort study with 10 years of follow-up. Orphanet J Rare Dis 2023 ; 18 : 319. [CrossRef] [PubMed] [Google Scholar]
  39. Zhang H, Liu Y, Ma J, et al. Systematic review of physical exercise for patients with idiopathic inflammatory myopathies. Nurs Health Sci 2021 ; 23 : 312–324. [CrossRef] [PubMed] [Google Scholar]
  40. Moore UR, Jacobs M, Fernandez-Torron R, et al. Teenage exercise is associated with earlier symptom onset in dysferlinopathy: a retrospective cohort study. J Neurol Neurosurg Psychiatry 2018 ; 89 : 1224–1226. [CrossRef] [PubMed] [Google Scholar]
  41. Noury J-B, Zagnoli F, Petit F, et al. Exercise efficiency impairment in metabolic myopathies. Sci Rep 2020 ; 10 : 8765. [CrossRef] [PubMed] [Google Scholar]
  42. Ribeiro A, Suetterlin KJ, Skorupinska I, et al. The long exercise test as a functional marker of periodic paralysis. Muscle & Nerve 2022 ; 65 : 581–585. [CrossRef] [PubMed] [Google Scholar]
  43. Chaix M-A, Marcotte F, Dore A, et al. Risks and Benefits of Exercise Training in Adults With Congenital Heart Disease. Canadian Journal of Cardiology 2016 ; 32 : 459–466. [CrossRef] [Google Scholar]
  44. Boulinguiez A, Dhiab J, Crisol B, et al. Different outcomes of endurance and resistance exercise in skeletal muscles of Oculopharyngeal muscular dystrophy. J Cachexia Sarcopenia Muscle 2024 ; Publication en ligne [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.