Free Access
Issue
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
Page(s) 60 - 63
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2024133
Published online 18 November 2024
  1. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 2015 ; 96 (3) : 183–195. [CrossRef] [PubMed] [Google Scholar]
  2. Murach KA, Fry CS, Dupont-Versteegden EE, et al. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021 ; 35 (10) : e21893. [CrossRef] [PubMed] [Google Scholar]
  3. Relaix F, Bencze M, Borok MJ, et al. Perspectives on skeletal muscle stem cells. Nat Commun 2021 ; 12 (1) : 692. [CrossRef] [PubMed] [Google Scholar]
  4. Folmes CDL, Dzeja PP, Nelson TJ, et al. Metabolic Plasticity in Stem Cell Homeostasis and Differentiation. Cell Stem Cell 2012 ; 11 (5) : 596–606. [CrossRef] [PubMed] [Google Scholar]
  5. Mounier R, Théret M, Lantier L, et al. Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab 2015 ; 26 (6) : 275–286. [CrossRef] [PubMed] [Google Scholar]
  6. Theret M, Gsaier L, Schaffer B, et al. AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis. EMBO J 2017 ; 36 (13) : 1946–1962. [CrossRef] [PubMed] [Google Scholar]
  7. Kneppers A, Ben Larbi S, Theret M, et al. AMPKα2 is a skeletal muscle stem cell intrinsic regulator of myonuclear accretion. iScience 2023 ; 26 (12) : 108343. [CrossRef] [PubMed] [Google Scholar]
  8. Dadgar S, Wang Z, Johnston H, et al. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J Cell Biol 2014 ; 207 (1) : 139–158. [CrossRef] [PubMed] [Google Scholar]
  9. Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy. Nat Rev Dis Primer 2021 ; 7 (1) : 13. [CrossRef] [Google Scholar]
  10. Ribeiro AF, Souza LS, Almeida CF, et al. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci Rep 2019 ; 9 (1) : 11842. [CrossRef] [PubMed] [Google Scholar]
  11. Kottlors M, Kirschner J. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 2010 ; 340 (3) : 541–548. [CrossRef] [PubMed] [Google Scholar]
  12. Anderson JE. A Role for Nitric Oxide in Muscle Repair: Nitric Oxide-mediated Activation of Muscle Satellite Cells. Mol Biol Cell 2000 ; 11 (5) : 1859–1874. [CrossRef] [PubMed] [Google Scholar]
  13. Dumont NA, Wang YX, von Maltzahn J, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 2015 ; 21 (12) : 1455–1463. [CrossRef] [PubMed] [Google Scholar]
  14. Yablonka-Reuveni Z, Anderson JE. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn Off Publ Am Assoc Anat 2006 ; 235 (1) : 203–212. [Google Scholar]
  15. Ljubicic V, Khogali S, Renaud JM, et al. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol 2012 ; 302 (1) : C110–121. [CrossRef] [PubMed] [Google Scholar]
  16. Juban G, Saclier M, Yacoub-Youssef H, et al. AMPK Activation Regulates LTBP4-Dependent TGF-β1 Secretion by Pro-inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Rep 2018 ; 25 (8) : 2163–2176.e6. [CrossRef] [PubMed] [Google Scholar]
  17. Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007 ; 204 (5) : 1057–1069. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.