Free Access
Issue
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
Page(s) 56 - 59
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2024139
Published online 18 November 2024
  1. Buckingham M, Relaix F. The Role of Pax Genes in the Development of Tissues and Organs: Pax3 and Pax7 Regulate Muscle Progenitor Cell Functions. Annu Rev Cell Dev Biol 2007; 23 (1): 645–673. [CrossRef] [PubMed] [Google Scholar]
  2. Abmayr SM, Keller CA. Drosophila Myogenesis and insights into the Role of nautilus. Curr Top Dev Biol 1998; 38: 35–80. [CrossRef] [PubMed] [Google Scholar]
  3. Tajbakhsh S, Buckingham M. The Birth of Muscle Progenitor Cells in the Mouse: Spatiotemporal Considerations. Curr Top Dev Biol 2000; 48: 225–268. [CrossRef] [PubMed] [Google Scholar]
  4. Tremblay P, Dietrich S, Mericskay M, et al. A Crucial Role for Pax3 in the Development of the Hypaxial Musculature and the Long-Range Migration of Muscle Precursors. Dev Biol 1998; 203 (1): 49–61. [CrossRef] [PubMed] [Google Scholar]
  5. Bober E, Brand-Saberi B, Ebensperger C, et al. Initial steps of myogenesis in somites are independent of influence from axial structures. Development 1994; 120 (11): 3073–3082. [CrossRef] [PubMed] [Google Scholar]
  6. Goulding M, Lumsden A, Paquette AJ. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 1994; 120 (4): 957–971. [CrossRef] [PubMed] [Google Scholar]
  7. Tajbakhsh S, Rocancourt D, Cossu G, et al. Redefining the Genetic Hierarchies Controlling Skeletal Myogenesis: Pax-3 and Myf-5 Act Upstream of MyoD. Cell 1997; 89 (1): 127–138. [CrossRef] [PubMed] [Google Scholar]
  8. Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. Cell Regen 2021; 10 (1): 31. [CrossRef] [PubMed] [Google Scholar]
  9. Epstein JA, Shapiro DN, Cheng J, et al. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 1996; 93 (9): 4213–4218. [CrossRef] [PubMed] [Google Scholar]
  10. Lagha M, Kormish JD, Rocancourt D, et al. Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev 2008; 22 (13): 1828–1837. [CrossRef] [PubMed] [Google Scholar]
  11. Sato T, Rocancourt D, Marques L, et al. A Pax3/Dmrt2/Myf5 Regulatory Cascade Functions at the Onset of Myogenesis. PLoS Genet 2010; 6 (4): e1000897. [CrossRef] [PubMed] [Google Scholar]
  12. Seo KW. Dmrt2 and Pax3 double-knockout mice show severe defects in embryonic myogenesis. Comp Med 2007; 57 (5): 460–468. [PubMed] [Google Scholar]
  13. Lagha M, Brunelli S, Messina G, et al. Pax3:Foxc2. Reciprocal Repression in the Somite Modulates Muscular versus Vascular Cell Fate Choice in Multipotent Progenitors. Dev Cell 2009; 17 (6): 892–899. [CrossRef] [PubMed] [Google Scholar]
  14. Fougerousse F, et al. Six and Eya expression during human somitogenesis and MyoD gene family activation. J Muscle Res Cell Motil 2002; 23 (3): 255–264. [CrossRef] [PubMed] [Google Scholar]
  15. Relaix F, Demignon J, Laclef C, et al. Six Homeoproteins Directly Activate Myod Expression in the Gene Regulatory Networks That Control Early Myogenesis. PLoS Genet 2013; 9 (2): 493–5. [Google Scholar]
  16. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9 (2): 493–495. [CrossRef] [Google Scholar]
  17. Seale P, Sabourin LA, Girgis-Gabardo A, et al. Pax7 Is Required for the Specification of Myogenic Satellite Cells. Cell 2000; 102 (6): 777–786. [CrossRef] [PubMed] [Google Scholar]
  18. Kuang S, Chargé SB, Seale P, et al. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 2006; 172 (1): 103–113. [CrossRef] [PubMed] [Google Scholar]
  19. Relaix F, Montarras D, Zaffran S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 2006; 172 (1): 91–102. [CrossRef] [PubMed] [Google Scholar]
  20. de Morree A, Klein JDD, Gan Q, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science 1979; 366 (6466): 734–738. [Google Scholar]
  21. Der Vartanian A, Quétin M, Michineau S, et al. PAX3 Confers Functional Heterogeneity in Skeletal Muscle Stem Cell Responses to Environmental Stress. Cell Stem Cell 2019; 24 (6): 958–973.e9. [CrossRef] [PubMed] [Google Scholar]
  22. Scaramozza A, Park D, Kollu S, et al. Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable of Clonal Expansion under Stress. Cell Stem Cell 2019; 24 (6): 944–957.e5. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.