Accès gratuit
Numéro |
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 60 - 63 | |
Section | Prix SFM | |
DOI | https://doi.org/10.1051/medsci/2024133 | |
Publié en ligne | 18 novembre 2024 |
- Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 2015 ; 96 (3) : 183–195. [CrossRef] [PubMed] [Google Scholar]
- Murach KA, Fry CS, Dupont-Versteegden EE, et al. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021 ; 35 (10) : e21893. [CrossRef] [PubMed] [Google Scholar]
- Relaix F, Bencze M, Borok MJ, et al. Perspectives on skeletal muscle stem cells. Nat Commun 2021 ; 12 (1) : 692. [CrossRef] [PubMed] [Google Scholar]
- Folmes CDL, Dzeja PP, Nelson TJ, et al. Metabolic Plasticity in Stem Cell Homeostasis and Differentiation. Cell Stem Cell 2012 ; 11 (5) : 596–606. [CrossRef] [PubMed] [Google Scholar]
- Mounier R, Théret M, Lantier L, et al. Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab 2015 ; 26 (6) : 275–286. [CrossRef] [PubMed] [Google Scholar]
- Theret M, Gsaier L, Schaffer B, et al. AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis. EMBO J 2017 ; 36 (13) : 1946–1962. [CrossRef] [PubMed] [Google Scholar]
- Kneppers A, Ben Larbi S, Theret M, et al. AMPKα2 is a skeletal muscle stem cell intrinsic regulator of myonuclear accretion. iScience 2023 ; 26 (12) : 108343. [CrossRef] [PubMed] [Google Scholar]
- Dadgar S, Wang Z, Johnston H, et al. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J Cell Biol 2014 ; 207 (1) : 139–158. [CrossRef] [PubMed] [Google Scholar]
- Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy. Nat Rev Dis Primer 2021 ; 7 (1) : 13. [CrossRef] [Google Scholar]
- Ribeiro AF, Souza LS, Almeida CF, et al. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci Rep 2019 ; 9 (1) : 11842. [CrossRef] [PubMed] [Google Scholar]
- Kottlors M, Kirschner J. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 2010 ; 340 (3) : 541–548. [CrossRef] [PubMed] [Google Scholar]
- Anderson JE. A Role for Nitric Oxide in Muscle Repair: Nitric Oxide-mediated Activation of Muscle Satellite Cells. Mol Biol Cell 2000 ; 11 (5) : 1859–1874. [CrossRef] [PubMed] [Google Scholar]
- Dumont NA, Wang YX, von Maltzahn J, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 2015 ; 21 (12) : 1455–1463. [CrossRef] [PubMed] [Google Scholar]
- Yablonka-Reuveni Z, Anderson JE. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn Off Publ Am Assoc Anat 2006 ; 235 (1) : 203–212. [Google Scholar]
- Ljubicic V, Khogali S, Renaud JM, et al. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol 2012 ; 302 (1) : C110–121. [CrossRef] [PubMed] [Google Scholar]
- Juban G, Saclier M, Yacoub-Youssef H, et al. AMPK Activation Regulates LTBP4-Dependent TGF-β1 Secretion by Pro-inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Rep 2018 ; 25 (8) : 2163–2176.e6. [CrossRef] [PubMed] [Google Scholar]
- Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007 ; 204 (5) : 1057–1069. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.