Open Access
Issue |
Med Sci (Paris)
Volume 40, Number 2, Février 2024
|
|
---|---|---|
Page(s) | 167 - 175 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023220 | |
Published online | 27 February 2024 |
- Weil R, Laplantine E, Curic S, Genin P. Role of Optineurin in the Mitochondrial Dysfunction : Potential Implications in Neurodegenerative Diseases and Cancer. Front Immunol 2018 ; 9 : 1243. [CrossRef] [PubMed] [Google Scholar]
- Lopez-Domenech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81 : 102 747. [Google Scholar]
- Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease : mechanisms and potential targets. Signal Transduct Target Ther 2023; 8 : 333. [CrossRef] [PubMed] [Google Scholar]
- Rangaraju V, Lauterbach M, Schuman EM. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell 2019 ; 176(73–84): e15. [CrossRef] [PubMed] [Google Scholar]
- Van Laar VS, Arnold B, Howlett EH, et al. Evidence for Compartmentalized Axonal Mitochondrial Biogenesis : Mitochondrial DNA Replication Increases in Distal Axons As an Early Response to Parkinson’s Disease-Relevant Stress. J Neurosci 2018 ; 38 : 7505–7515. [CrossRef] [PubMed] [Google Scholar]
- Lu D, Feng Y, Liu G, et al. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17 : 1 268 883. [CrossRef] [Google Scholar]
- Huang N, Li S, Xie Y, et al. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021; 31 : 3098–114 e7. [CrossRef] [PubMed] [Google Scholar]
- Misgeld T, Schwarz TL. Mitostasis in Neurons : Maintaining Mitochondria in an Extended Cellular Architecture. Neuron 2017 ; 96 : 651–666. [CrossRef] [PubMed] [Google Scholar]
- Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21 : 85–100. [CrossRef] [PubMed] [Google Scholar]
- Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 2020; 16 : 3–17. [CrossRef] [PubMed] [Google Scholar]
- Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 2014 ; 111 : 15514–519. [Google Scholar]
- Albensi BC. What Is Nuclear Factor Kappa B (NF-kappaB) Doing in and to the Mitochondrion ?. Front Cell Dev Biol 2019 ; 7 : 154. [CrossRef] [PubMed] [Google Scholar]
- Harding O, Holzer E, Riley JF, et al. Damaged mitochondria recruit the effector NEMO to activate NF-kappaB signaling. Mol Cell 2023; 83 : 3188–204 e7. [CrossRef] [PubMed] [Google Scholar]
- Uoselis L, Nguyen TN, Lazarou M. Mitochondrial degradation : Mitophagy and beyond. Mol Cell 2023; 83 : 3404–20. [CrossRef] [PubMed] [Google Scholar]
- Moore AS, Holzbaur EL. Spatiotemporal dynamics of autophagy receptors in selective mitophagy. Autophagy 2016 ; 12 : 1956–1957. [CrossRef] [PubMed] [Google Scholar]
- Yamano K, Kikuchi R, Kojima W, et al. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J Cell Biol 2020; 219. [Google Scholar]
- Nguyen TN, Sawa-Makarska J, Khuu G, et al. Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Mol Cell 2023; 83 : 1693–709 e9. [CrossRef] [PubMed] [Google Scholar]
- Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma : a review. Exp Eye Res 2009 ; 88 : 837–844. [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res 2011 ; 93 : 331–339. [CrossRef] [PubMed] [Google Scholar]
- Sirohi K, Kumari A, Radha V, Swarup G. A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS One 2015 ; 10 : e0138289. [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Shao Z, Liu X, et al. The E50K optineurin mutation impacts autophagy-mediated degradation of TDP-43 and leads to RGC apoptosis in vivo and in vitro. Cell Death Discov 2021; 7 : 49. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Hou M, Zhang S, et al. Neuroprotective effects of bone marrow Sca-1 (+) cells against age-related retinal degeneration in OPTN E50K mice. Cell Death Dis 2021; 12 : 613. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Wang Q, Shao Z, et al. Proteomic analysis of aged and OPTN E50K retina in the development of normal tension glaucoma. Hum Mol Genet 2021; 30 : 1030–44. [CrossRef] [PubMed] [Google Scholar]
- Sirohi K, Swarup G. Defects in autophagy caused by glaucoma-associated mutations in optineurin. Exp Eye Res 2016 ; 144 : 54–63. [CrossRef] [PubMed] [Google Scholar]
- Jeong Y, Davis CO, Muscarella AM, et al. Glaucoma-associated Optineurin mutations increase transmitophagy in a vertebrate optic nerve. bioRxiv 2023 May 30 : 2023.05.26.542507. doi : 10.1101/2023.05.26.542507. [PubMed] [Google Scholar]
- Hou M, Shao Z, Zhang S, et al. Age-related visual impairments and retinal ganglion cells axonal degeneration in a mouse model harboring OPTN (E50K) mutation. Cell Death Dis 2022; 13 : 362. [CrossRef] [PubMed] [Google Scholar]
- Sirohi K, Chalasani ML, Sudhakar C, et al. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy 2013 ; 9 : 510–527. [CrossRef] [PubMed] [Google Scholar]
- Nagabhushana A, Bansal M, Swarup G. Optineurin is required for CYLD-dependent inhibition of TNFalpha-induced NF-kappaB activation. PLoS One 2011 ; 6 : e17477. [CrossRef] [PubMed] [Google Scholar]
- Medchalmi S, Tare P, Sayyad Z, Swarup G. A glaucoma- and ALS-associated mutant of OPTN induces neuronal cell death dependent on Tbk1 activity, autophagy and ER stress. FEBS J 2021; 288 : 4576–95. [CrossRef] [PubMed] [Google Scholar]
- Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006 ; 314 : 130–133. [CrossRef] [PubMed] [Google Scholar]
- Chu CT. Mechanisms of selective autophagy and mitophagy : Implications for neurodegenerative diseases. Neurobiol Dis 2019 ; 122 : 23–34. [CrossRef] [PubMed] [Google Scholar]
- Li YR, King OD, Shorter J, Gitler AD. Stress granules as crucibles of ALS pathogenesis. J Cell Biol 2013 ; 201 : 361–372. [CrossRef] [PubMed] [Google Scholar]
- Kwiatkowski TJ, Jr., Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009 ; 323 : 1205–1208. [CrossRef] [PubMed] [Google Scholar]
- Pottier C, Rampersaud E, Baker M, et al. Identification of compound heterozygous variants in OPTN in an ALS-FTD patient from the CReATe consortium : a case report. Amyotroph Lateral Scler Frontotemporal Degener 2018 ; 19 : 469–471. [CrossRef] [PubMed] [Google Scholar]
- Nakazawa S, Oikawa D, Ishii R, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun 2016 ; 7(12): 547. [Google Scholar]
- Moore AS, Holzbaur EL. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A 2016 ; 113 : E3349–E3358. [PubMed] [Google Scholar]
- Hu WB, et al. Neutralizing peripheral circulating IL1beta slows the progression of ALS in a lentivirus-infected OPTN (E478G) mouse model. Animal Model Exp Med 2023; 6 : 18–25. [CrossRef] [PubMed] [Google Scholar]
- Mohovic N, Peradinovic J, Markovinovic A, et al. Neuroimmune characterization of optineurin insufficiency mouse model during ageing. Sci Rep 2023; 13 : 11840. [CrossRef] [PubMed] [Google Scholar]
- Kakihana T, Takahashi M, Katsuragi Y, et al. The optineurin/TIA1 pathway inhibits aberrant stress granule formation and reduces ubiquitinated TDP-43. iScience 2021; 24 : 102 733. [Google Scholar]
- Mou Y, Li M, Liu M, et al. OPTN variants in ALS cases : a case report of a novel mutation and literature review. Neurol Sci 2022; 43 : 5391–6. [CrossRef] [PubMed] [Google Scholar]
- Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev 2018 ; 42 : 72–85. [CrossRef] [PubMed] [Google Scholar]
- Dominguez J, Yu JT, Tan YJ, et al. Novel Optineurin Frameshift Insertion in a Family With Frontotemporal Dementia and Parkinsonism Without Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12 : 645 913. [CrossRef] [Google Scholar]
- Imberechts D, Kinnart I, Wauters F, et al. DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy. Brain 2022; 145 : 4368–84. [CrossRef] [PubMed] [Google Scholar]
- Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 2011 ; 119 : 866–872. [CrossRef] [PubMed] [Google Scholar]
- Wise JP, Jr., Cannon J. From the Cover : Alterations in Optineurin Expression and Localization in Pre-clinical Parkinson’s Disease Models. Toxicol Sci 2016 ; 153 : 372–381. [CrossRef] [PubMed] [Google Scholar]
- Schwab C, Yu S, McGeer EG, McGeer PL. Optineurin in Huntington’s disease intranuclear inclusions. Neurosci Lett 2012 ; 506 : 149–154. [CrossRef] [PubMed] [Google Scholar]
- Sahlender DA, Roberts RC, Arden SD, et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 2005 ; 169 : 285–295. [CrossRef] [PubMed] [Google Scholar]
- Moharir SC, Raghawan AK, Ramaswamy R, Swarup G. Autophagy-independent cytoprotection by optineurin from toxicity of aggregates formed by mutant huntingtin and mutant ataxin-3. J Biochem 2022; 171 : 555–65. [CrossRef] [PubMed] [Google Scholar]
- Osawa T, Mizuno Y, Fujita Y, et al. Optineurin in neurodegenerative diseases. Neuropathology 2011 ; 31 : 569–574. [CrossRef] [PubMed] [Google Scholar]
- Xu Y, Liu Y, Chen X, et al. OPTN attenuates the neurotoxicity of abnormal Tau protein by restoring autophagy. Transl Psychiatry 2022; 12 : 230. [CrossRef] [PubMed] [Google Scholar]
- Roca-Agujetas V, Barbero-Camps E, de Dios C, et al. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer’s disease. Mol Neurodegener 2021; 16 : 15. [CrossRef] [PubMed] [Google Scholar]
- Du F, Yu Q, Yan S, et al. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 2017 ; 140 : 3233–3251. [CrossRef] [PubMed] [Google Scholar]
- Duan R, Hong CG, Chen ML, et al. Targeting autophagy receptors OPTN and SQSTM1 as a novel therapeutic strategy for osteoporosis complicated with Alzheimer’s disease. Chem Biol Interact 2023; 377 : 110 462. [Google Scholar]
- Kruppa AJ, Kishi-Itakura C, Masters TA, et al. Myosin VI-Dependent Actin Cages Encapsulate Parkin-Positive Damaged Mitochondria. Dev Cell 2018 ; 44 : 484–99.e6. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.